Golson ML, Kaestner KH. Fox transcription factors: from development to disease. Development. 2016;143(24):4558–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Konopka G, Roberts TF. Insights into the neural and genetic basis of vocal communication. Cell. 2016;164(6):1269–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowers JM, Konopka G. The role of the FOXP family of transcription factors in ASD. Dis Mark. 2012;33(5):251–60.
Article
CAS
Google Scholar
Le Fevre AK, Taylor S, Malek NH, Horn D, Carr CW, Abdul-Rahman OA, et al. FOXP1 mutations cause intellectual disability and a recognizable phenotype. Am J Med Genet Part A. 2013;161(12):3166–75.
Article
CAS
Google Scholar
Reuter MS, Riess A, Moog U, Briggs TA, Chandler KE, Rauch A, et al. FOXP2 variants in 14 individuals with developmental speech and language disorders broaden the mutational and clinical spectrum. J Med Genet. 2017;54(1):64–72.
Article
CAS
PubMed
Google Scholar
Charng WL, Karaca E, Coban Akdemir Z, Gambin T, Atik MM, Gu S, et al. Exome sequencing in mostly consanguineous Arab families with neurologic disease provides a high potential molecular diagnosis rate. BMC Med Genom. 2016;9(1):42.
Article
CAS
Google Scholar
Lai CSL, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature. 2001;413(6855):519–23.
Article
CAS
PubMed
Google Scholar
Schulze K, Vargha-Khadem F, Mishkin M. Phonological working memory and FOXP2. Neuropsychologia. 2018;108:147–52.
Article
PubMed
Google Scholar
Gong X, Jia M, Ruan Y, Shuang M, Liu J, Wu S, et al. Association between the FOXP2 gene and autistic disorder in Chinese population. Am J Med Genet Part B Neuropsychiatr Genet. 2004;127B(1):113–6.
Article
Google Scholar
Chien YL, Wu YY, Chen HI, Tsai WC, Chiu YN, Liu SK, et al. The central nervous system patterning gene variants associated with clinical symptom severity of autism spectrum disorders. J Formos Med Assoc. 2017;116(10):755–64.
Article
CAS
PubMed
Google Scholar
Morgan A, Fisher S, Scheffer I, Hildebrand M. FOXP2-related speech and language disorders. In: Adam MPAH, Pagon RA, et al., editors. June 23 2016 ed. GeneReviews®; 2016.
Kaestner KH, Knöchel W, Martínez DE. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 2000;14(2):142-6.
CAS
PubMed
Google Scholar
Horng S, Kreiman G, Ellsworth C, Page D, Blank M, Millen K, et al. Differential gene expression in the developing lateral geniculate nucleus and medial geniculate nucleus reveals novel roles for Zic4 and Foxp2 in visual and auditory pathway development. J Neurosci. 2009;29(43):13672–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haesler S, Wada K, Nshdejan A, Morrisey EE, Lints T, Jarvis ED, et al. FoxP2 expression in avian vocal learners and non-learners. J Neurosci. 2004;24(13):3164.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wohlgemuth S, Adam I, Scharff C. FoxP2 in songbirds. Curr Opin Neurobiol. 2014;28:86–93.
Article
CAS
PubMed
Google Scholar
Hannenhalli S, Kaestner KH. The evolution of Fox genes and their role in development and disease. Nat Rev Genet. 2009;10(4):233–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi H, Takahashi K, Liu F-C. FOXP genes, neural development, speech and language disorders. In: Maiese K, editor. Forkhead transcription factors: vital elements in biology and medicine. New York: Springer; 2010. p. 117–29.
Google Scholar
Lai CSL, Gerrelli D, Monaco AP, Fisher SE, Copp AJ. FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain. 2003;126(11):2455–62.
Article
PubMed
Google Scholar
Shu W, Yang H, Zhang L, Lu MM, Morrisey EE. Characterization of a new subfamily of winged-helix/forkhead (fox) genes that are expressed in the lung and act as transcriptional repressors. J Biol Chem. 2001;276(29):27488–97.
Article
CAS
PubMed
Google Scholar
Campbell P, Reep RL, Stoll ML, Ophir AG, Phelps SM. Conservation and diversity of Foxp2 expression in muroid rodents: functional implications. J Comp Neurol. 2009;512(1):84–100.
Article
PubMed
PubMed Central
Google Scholar
Mendoza E, Tokarev K, Düring DN, Retamosa EC, Weiss M, Arpenik N, et al. Differential coexpression of FoxP1, FoxP2, and FoxP4 in the Zebra Finch (Taeniopygia guttata) song system. J Comp Neurol. 2015;523(9):1318–40.
Article
CAS
PubMed
Google Scholar
Chen Q, Heston JB, Burkett ZD, White SA. Expression analysis of the speech-related genes FoxP1 and FoxP2 and their relation to singing behavior in two songbird species. J Exp Biol. 2013;216(19):3682–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferland RJ, Cherry TJ, Preware PO, Morrisey EE, Walsh CA. Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. J Comp Neurol. 2003;460(2):266–79.
Article
CAS
PubMed
Google Scholar
Shimeld SM, Degnan B, Luke GN. Evolutionary genomics of the Fox genes: origin of gene families and the ancestry of gene clusters. Genomics. 2010;95(5):256–60.
Article
CAS
PubMed
Google Scholar
Schatton A, Mendoza E, Grube K, Scharff C. FoxP in bees: a comparative study on the developmental and adult expression pattern in three bee species considering isoforms and circuitry. J Comp Neurol. 2018;526(9):1589–610.
Article
CAS
PubMed
Google Scholar
Adell T, Muller WE. Isolation and characterization of five Fox (Forkhead) genes from the sponge Suberites domuncula. Gene. 2004;334:35–46.
Article
CAS
PubMed
Google Scholar
Lawton KJ, Wassmer TL, Deitcher DL. Conserved role of Drosophila melanogaster FoxP in motor coordination and courtship song. Behav Brain Res. 2014;268:213–21.
Article
CAS
PubMed
Google Scholar
DasGupta S, Ferreira CH, Miesenböck G. FoxP influences the speed and accuracy of a perceptual decision in Drosophila. Science. 2014;344(6186):901–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mendoza E, Colomb J, Rybak J, Pflüger H-J, Zars T, Scharff C, et al. Drosophila FoxP mutants are deficient in operant self-learning. PLoS ONE. 2014;9(6):e100648.
Article
PubMed
PubMed Central
CAS
Google Scholar
Groschner LN, Chan WHL, Bogacz R, DasGupta S, Miesenbock G. Dendritic integration of sensory evidence in perceptual decision-making. Cell. 2018;173(4):894.e13–905.e13.
Article
CAS
Google Scholar
Kiya T, Itoh Y, Kubo T. Expression analysis of the FoxP homologue in the brain of the honeybee Apis mellifera. Insect Mol Biol. 2008;17(1):53–60.
Article
CAS
PubMed
Google Scholar
Schatton A, Scharff C. FoxP expression identifies a Kenyon cell subtype in the honeybee mushroom bodies linking them to fruit fly αβc neurons. Eur J Neurosci. 2017;46(9):2534–41.
Article
PubMed
Google Scholar
Santos ME, Athanasiadis A, Leitão AB, DuPasquier L, Sucena É. Alternative splicing and gene duplication in the evolution of the FoxP gene subfamily. Mol Biol Evol. 2011;28(1):237–47.
Article
CAS
PubMed
Google Scholar
Srinivasan MV. Honey bees as a model for vision, perception, and cognition. Annu Rev Entomol. 2010;55(1):267–84.
Article
CAS
PubMed
Google Scholar
Menzel R. The honeybee as a model for understanding the basis of cognition. Nat Rev Neurosci. 2012;13(11):758–68.
Article
CAS
PubMed
Google Scholar
Eisenhardt D. Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera). Learn Memory. 2014;21(10):534–42.
Article
CAS
Google Scholar
Menzel R, Greggers U, Smith A, Berger S, Brandt R, Brunke S, et al. Honey bees navigate according to a map-like spatial memory. Proc Natl Acad Sci USA. 2005;102(8):3040–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
von Frisch K. Decoding the language of the bee. Science. 1974;185:663–8.
Article
Google Scholar
von Frisch K. Die Tänze der Bienen. Österr Zool Zeit. 1946;1:1–48.
Google Scholar
Schürch R, Couvillon MJ, Beekman M. Ballroom biology: recent insights into honey bee waggle dance communications. Front Ecol Evol. 2016;3:147.
Article
Google Scholar
von Frisch K. Über die “Sprache” der Bienen, eine tier-psychologische Untersuchung. Zool Jahrb. 1923;40:1–186.
Google Scholar
Avargues-Weber A, Giurfa M. Conceptual learning by miniature brains. Proc Biol Sci. 2013;280(1772):20131907.
Article
PubMed
PubMed Central
Google Scholar
Perry CJ, Barron AB. Honey bees selectively avoid difficult choices. Proc Natl Acad Sci. 2013;110(47):19155–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG. Numerical ordering of zero in honey bees. Science. 2018;360(6393):1124–6.
Article
CAS
PubMed
Google Scholar
Duffy KR, Holman KD, Mitchell DE. Shrinkage of X cells in the lateral geniculate nucleus after monocular deprivation revealed by FoxP2 labeling. Vis Neurosci. 2014;31(3):253–61.
Article
PubMed
Google Scholar
Iwai L, Ohashi Y, van der List D, Usrey WM, Miyashita Y, Kawasaki H. FoxP2 is a Parvocellular-specific transcription factor in the visual thalamus of monkeys and ferrets. Cereb Cortex (New York, NY). 2013;23(9):2204–12.
Google Scholar
Miller JE, Spiteri E, Condro MC, Dosumu-Johnson RT, Geschwind DH, White SA. Birdsong decreases protein levels of FoxP2, a molecule required for human speech. J Neurophysiol. 2008;100(4):2015–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teramitsu I, White SA. FoxP2 regulation during undirected singing in adult songbirds. J Neurosci. 2006;26(28):7390–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adam I, Mendoza E, Kobalz U, Wohlgemuth S, Scharff C. FoxP2 directly regulates the reelin receptor VLDLR developmentally and by singing. Mol Cell Neurosci. 2016;74:96–105.
Article
CAS
PubMed
Google Scholar
Schäfer S, Bicker G. Distribution of GABA-like immunoreactivity in the brain of the honeybee. J Comp Neurol. 1986;246(3):287–300.
Article
PubMed
Google Scholar
Schäfer S, Rehder V. Dopamine-like immunoreactivity in the brain and suboesophageal ganglion of the honeybee. J Comp Neurol. 1989;280(1):43–58.
Article
PubMed
Google Scholar
Bicker G, Schafer S, Ottersen O, Storm-Mathisen J. Glutamate-like immunoreactivity in identified neuronal populations of insect nervous systems. J Neurosci. 1988;8(6):2108–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kreissl S, Eichmüller S, Bicker G, Rapus J, Eckert M. Octopamine-like immunoreactivity in the brain and subesophageal ganglion of the honeybee. J Comp Neurol. 1994;348(4):583–95.
Article
CAS
PubMed
Google Scholar
Schürmann F-W, Ottersen OP, Honegger H-W. Glutamate-like immunoreactivity marks compartments of the mushroom bodies in the brain of the cricket. J Comp Neurol. 2000;418(2):227–39.
Article
PubMed
Google Scholar
Sinakevitch I, Farris SM, Strausfeld NJ. Taurine-, aspartate- and glutamate-like immunoreactivity identifies chemically distinct subdivisions of Kenyon cells in the cockroach mushroom body. J Comp Neurol. 2001;439(3):352–67.
Article
CAS
PubMed
Google Scholar
Kreissl S, Bicker G. Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor-like antigen in the brain of the honeybee. J Comp Neurol. 1989;286(1):71–84.
Article
CAS
PubMed
Google Scholar
Fusca D, Husch A, Baumann A, Kloppenburg P. Choline acetyltransferase-like immunoreactivity in a physiologically distinct subtype of olfactory nonspiking local interneurons in the cockroach (Periplaneta americana). J Comp Neurol. 2013;521(15):3556–69.
Article
CAS
PubMed
Google Scholar
Kiya T, Kubo T. Analysis of GABAergic and non-GABAergic neuron activity in the optic lobes of the forager and re-orienting worker honeybee (Apis mellifera L.). PLoS ONE. 2010;5(1):e8833.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kucharski R, Ball EE, Hayward DC, Maleszka R. Molecular cloning and expression analysis of a cDNA encoding a glutamate transporter in the honeybee brain. Gene. 2000;242(1–2):399–405.
Article
CAS
PubMed
Google Scholar
Thany SH, Lenaers G, Crozatier M, Armengaud C, Gauthier M. Identification and localization of the nicotinic acetylcholine receptor alpha3 mRNA in the brain of the honeybee Apis mellifera. Insect Mol Biol. 2003;12(3):255–62.
Article
CAS
PubMed
Google Scholar
Zannat MT, Locatelli F, Rybak J, Menzel R, Leboulle G. Identification and localisation of the NR1 sub-unit homologue of the NMDA glutamate receptor in the honeybee brain. Neurosci Lett. 2006;398(3):274–9.
Article
CAS
PubMed
Google Scholar
Sinakevitch I, Mustard JA, Smith BH. Distribution of the octopamine receptor AmOA1 in the honey bee brain. PLoS ONE. 2011;6(1):e14536.
Article
CAS
PubMed
PubMed Central
Google Scholar
El Hassani AK, Schuster S, Dyck Y, Demares F, Leboulle G, Armengaud C. Identification, localization and function of glutamate-gated chloride channel receptors in the honeybee brain. Eur J Neurosci. 2012;36(4):2409–20.
Article
PubMed
Google Scholar
Démares F, Raymond V, Armengaud C. Expression and localization of glutamate-gated chloride channel variants in honeybee brain (Apis mellifera). Insect Biochem Mol Biol. 2013;43(1):115–24.
Article
PubMed
CAS
Google Scholar
Humphries MA, Mustard JA, Hunter SJ, Mercer A, Ward V, Ebert PR. Invertebrate D2 type dopamine receptor exhibits age-based plasticity of expression in the mushroom bodies of the honeybee brain. J Neurobiol. 2003;55(3):315–30.
Article
CAS
PubMed
Google Scholar
Ultsch A, Schuster CM, Laube B, Schloss P, Schmitt B, Betz H. Glutamate receptors of Drosophila melanogaster: cloning of a kainate-selective subunit expressed in the central nervous system. Proc Natl Acad Sci. 1992;89(21):10484–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ultsch A, Schuster CM, Laube B, Betz H, Schmitt B. Glutamate receptors of Drosophila melanogaster. FEBS Lett. 1993;324(2):171–7.
Article
CAS
PubMed
Google Scholar
Romero-Calderón R, Uhlenbrock G, Borycz J, Simon AF, Grygoruk A, Yee SK, et al. A glial variant of the vesicular monoamine transporter is required to store histamine in the drosophila visual system. PLoS Genet. 2008;4(11):e1000245.
Article
PubMed
PubMed Central
CAS
Google Scholar
Homberg U. Neurotransmitters and neuropeptides in the brain of the locust. Microsc Res Tech. 2002;56(3):189–209.
Article
CAS
PubMed
Google Scholar
Breer H. Neurochemistry of cholinergic synapses in insects. In: von Keyserlingk HC, Jäger A, von Szczepanski C, editors. Approaches to new leads for insecticides. Berlin: Springer; 1985. p. 89–99.
Chapter
Google Scholar
Goldberg F, Grünewald B, Rosenboom H, Menzel R. Nicotinic acetylcholine currents of cultured Kenyon cells from the mushroom bodies of the honey bee Apis mellifera. J Physiol. 1999;514(Pt 3):759–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barbara GS, Zube C, Rybak J, Gauthier M, Grünewald B. Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. J Comp Physiol A. 2005;191(9):823–36.
Article
Google Scholar
Müßig L, Richlitzki A, Rößler R, Eisenhardt D, Menzel R, Leboulle G. Acute disruption of the NMDA receptor subunit NR1 in the honeybee brain selectively impairs memory formation. J Neurosci. 2010;30(23):7817–25.
Article
PubMed
CAS
PubMed Central
Google Scholar
Démares F, Drouard F, Massou I, Crattelet C, Lœuillet A, Bettiol C, et al. Differential involvement of glutamate-gated chloride channel splice variants in the olfactory memory processes of the honeybee Apis mellifera. Pharmacol Biochem Behav. 2014;124:137–44.
Article
PubMed
CAS
Google Scholar
Liu WW, Wilson RI. Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system. Proc Natl Acad Sci USA. 2013;110(25):10294–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Enell L, Hamasaka Y, Kolodziejczyk A, Nässel DR. γ-Aminobutyric acid (GABA) signaling components in Drosophila: immunocytochemical localization of GABAB receptors in relation to the GABAA receptor subunit RDL and a vesicular GABA transporter. J Comp Neurol. 2007;505(1):18–31.
Article
CAS
PubMed
Google Scholar
Sattelle DB, Lummis SCR, Wong JFH, Rauh JJ. Pharmacology of insect GABA receptors. Neurochem Res. 1991;16(3):363–74.
Article
CAS
PubMed
Google Scholar
El Hassani AK, Giurfa M, Gauthier M, Armengaud C. Inhibitory neurotransmission and olfactory memory in honeybees. Neurobiol Learn Memory. 2008;90(4):589–95.
Article
CAS
Google Scholar
Raccuglia D, Mueller U. Focal uncaging of GABA reveals a temporally defined role for GABAergic inhibition during appetitive associative olfactory conditioning in honeybees. Learn Memory. 2013;20(8):410–6.
Article
CAS
Google Scholar
Greer CL, Grygoruk A, Patton DE, Ley B, Romero-Calderon R, Chang H-Y, et al. A splice variant of the Drosophila vesicular monoamine transporter contains a conserved trafficking domain and functions in the storage of dopamine, serotonin, and octopamine. J Neurobiol. 2005;64(3):239–58.
Article
CAS
PubMed
Google Scholar
Waddell S. Reinforcement signalling in Drosophila; dopamine does it all after all. Curr Opin Neurobiol. 2013;23(3):324–9.
Article
CAS
PubMed
Google Scholar
Kaneko T, Macara AM, Li R, Hu Y, Iwasaki K, Dunnings Z, et al. Serotonergic Modulation enables pathway-specific plasticity in a developing sensory circuit in Drosophila. Neuron. 2017;95(3):623.e4–38.e4.
Article
CAS
Google Scholar
Hammer M. An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature. 1993;366:59.
Article
CAS
PubMed
Google Scholar
Kamhi JF, Traniello JFA. Biogenic amines and collective organization in a superorganism: neuromodulation of social behavior in ants. Brain Behav Evol. 2013;82(4):220–36.
Article
PubMed
Google Scholar
Schulz DJ, Barron AB, Robinson GE. A Role for octopamine in honey bee division of labor. Brain Behav Evol. 2002;60(6):350–9.
Article
PubMed
Google Scholar
Damrau C, Toshima N, Tanimura T, Brembs B, Colomb J. Octopamine and tyramine contribute separately to the counter-regulatory response to sugar deficit in Drosophila. Front Syst Neurosci. 2017;11:100.
Article
PubMed
Google Scholar
Stevenson PA, Dyakonova V, Rillich J, Schildberger K. Octopamine and experience-dependent modulation of aggression in crickets. J Neurosci. 2005;25(6):1431–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nall AH, Sehgal A. Small-molecule screen in adult Drosophila identifies VMAT as a regulator of sleep. J Neurosci. 2013;33(19):8534–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katz P, Grillner S, Wilson R, Borst A, Greenspan R, Buzsáki G, et al. Vertebrate versus invertebrate neural circuits. Curr Biol. 2013;23(12):R504–6.
Article
PubMed
CAS
Google Scholar
Shubin N, Tabin C, Carroll S. Deep homology and the origins of evolutionary novelty. Nature. 2009;457:818.
Article
CAS
PubMed
Google Scholar
Strausfeld NJ, Hirth F. Deep homology of arthropod central complex and vertebrate basal ganglia. Science. 2013;340(6129):157–61.
Article
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23(10):1289–91.
Article
CAS
PubMed
Google Scholar
Strutz A, Soelter J, Baschwitz A, Farhan A, Grabe V, Rybak J, et al. Decoding odor quality and intensity in the Drosophila brain. ELife. 2014;3:e04147.
Article
PubMed
PubMed Central
Google Scholar
Bicker G, Schäfer S, Kingan TG. Mushroom body feedback interneurones in the honeybee show GABA-like immunoreactivity. Brain Res. 1985;360(1–2):394–7.
Article
CAS
PubMed
Google Scholar
Rybak J, Menzel R. Anatomy of the mushroom bodies in the honey bee brain: the neuronal connections of the alpha-lobe. J Comp Neurol. 1993;334(3):444–65.
Article
CAS
PubMed
Google Scholar
Bicker G. Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee. Microsc Res Tech. 1999;45(3):174–83.
Article
CAS
PubMed
Google Scholar
Warren B, Kloppenburg P. Rapid and Slow chemical synaptic interactions of cholinergic projection neurons and GABAergic local interneurons in the insect antennal lobe. J Neurosci. 2014;34(39):13039–46.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ito K, Shinomiya K, Ito M, Armstrong JD, Boyan G, Hartenstein V, et al. A systematic nomenclature for the insect brain. Neuron. 2014;81(4):755–65.
Article
CAS
PubMed
Google Scholar
Brandt R, Rohlfing T, Rybak J, Krofczik S, Maye A, Westerhoff M, et al. Three-dimensional average-shape atlas of the honeybee brain and its applications. J Comp Neurol. 2005;492(1):1–19.
Article
PubMed
Google Scholar
Lai S-L, Awasaki T, Ito K, Lee T. Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage. Development. 2008;135(17):2883–93.
Article
CAS
PubMed
Google Scholar
Tedjakumala SR, Rouquette J, Boizeau ML, Mesce KA, Hotier L, Massou I, et al. A tyrosine-hydroxylase characterization of dopaminergic neurons in the honey bee brain. Front Syst Neurosci. 2017;11(47):47.
Article
PubMed
PubMed Central
Google Scholar
Mercer AR, Mobbs PG, Davenport AP, Evans PD. Biogenic amines in the brain of the honeybee Apis mellifera. Cell Tissue Res. 1983;234(3):655–77.
Article
CAS
PubMed
Google Scholar
Graham SA, Fisher SE. Understanding language from a genomic perspective. Annu Rev Genet. 2015;49(1):131–60.
Article
CAS
PubMed
Google Scholar
Haesler S, Rochefort C, Georgi B, Licznerski P, Osten P, Scharff C. Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in Songbird basal ganglia nucleus area X. PLoS Biol. 2007;5(12):e321.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schreiweis C, Bornschein U, Burguière E, Kerimoglu C, Schreiter S, Dannemann M, et al. Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. Proc Natl Acad Sci. 2014;111(39):14253–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaub S, Fisher SE, Ehret G. Ultrasonic vocalizations of adult male Foxp2-mutant mice: behavioral contexts of arousal and emotion. Genes Brain Behav. 2016;15(2):243–59.
Article
CAS
PubMed
Google Scholar
Chabout J, Sarkar A, Patel SR, Radden T, Dunson DB, Fisher SE, et al. A Foxp2 mutation implicated in human speech deficits alters sequencing of ultrasonic vocalizations in adult male mice. Front Behav Neurosci. 2016;10:197.
Article
PubMed
PubMed Central
CAS
Google Scholar
Heston JB, White SA. Behavior-linked FoxP2 regulation enables zebra finch vocal learning. J Neurosci. 2015;35(7):2885–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurt S, Fisher SE, Ehret G. Foxp2 mutations impair auditory-motor association learning. PLoS ONE. 2012;7(3):e33130.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee HH, Frasch M. Survey of forkhead domain encoding genes in the Drosophila genome: classification and embryonic expression patterns. Dev Dyn. 2004;229(2):357–66.
Article
CAS
PubMed
Google Scholar
Song X, Tang Y, Wang Y. Genesis of the vertebrate FoxP subfamily member genes occurred during two ancestral whole genome duplication events. Gene. 2016;588(2):156–62.
Article
CAS
PubMed
Google Scholar
Wang VY, Hassan BA, Bellen HJ, Zoghbi HY. Drosophila atonal fully rescues the phenotype of math1 null mice: new functions evolve in new cellular contexts. Curr Biol. 2002;12(18):1611–6.
Article
CAS
PubMed
Google Scholar
Quiring R, Walldorf U, Kloter U, Gehring W. Homology of the eyeless gene of Drosophila to the small eye gene in mice and Aniridia in humans. Science. 1994;265(5173):785–9.
Article
CAS
PubMed
Google Scholar
Williams MJ, Goergen P, Rajendran J, Zheleznyakova G, Hägglund MG, Perland E, et al. Obesity-linked homologues TfAP-2 and Twz establish meal frequency in Drosophila melanogaster. PLoS Genet. 2014;10(9):e1004499.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kalousova A, Mavropoulos A, Adams BA, Nekrep N, Li Z, Krauss S, et al. Dachshund homologues play a conserved role in islet cell development. Dev Biol. 2010;348(2):143–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Villar D, Flicek P, Odom DT. Evolution of transcription factor binding in metazoans—mechanisms and functional implications. Nat Rev Genet. 2014;15:221.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang ZS, Nguyen T, Mattila HR, Rodriguez-Zas SL, Seeley TD, Robinson GE. Molecular determinants of scouting behavior in honey bees. Science. 2012;335(6073):1225–8.
Article
CAS
PubMed
Google Scholar
Dupuis J, Louis T, Gauthier M, Raymond V. Insights from honeybee (Apis mellifera) and fly (Drosophila melanogaster) nicotinic acetylcholine receptors: from genes to behavioral functions. Neurosci Biobehav Rev. 2012;36(6):1553–64.
Article
CAS
PubMed
Google Scholar
Liebeskind BJ, Hillis DM, Zakon HH, Hofmann HA. Complex homology and the evolution of nervous systems. Trends Ecol Evol. 2016;31(2):127–35.
Article
PubMed
Google Scholar
Kloepper TH, Kienle CN, Fasshauer D. An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol Biol Cell. 2007;18(9):3463–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ai H, Kai K, Kumaraswamy A, Ikeno H, Wachtler T. Interneurons in the honeybee primary auditory center responding to waggle dance-like vibration pulses. J Neurosci. 2017;37(44):10624–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pollack GS. Analysis of temporal patterns of communication signals. Curr Opin Neurobiol. 2001;11(6):734–8.
Article
CAS
PubMed
Google Scholar
Alluri RK, Rose GJ, Hanson JL, Leary CJ, Vasquez-Opazo GA, Graham JA, et al. Phasic, suprathreshold excitation and sustained inhibition underlie neuronal selectivity for short-duration sounds. Proc Natl Acad Sci USA. 2016;113(13):E1927–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfeiffer K, Homberg U. Organization and functional roles of the central complex in the insect brain. Annu Rev Entomol. 2014;59(1):165–84.
Article
CAS
PubMed
Google Scholar
Stone T, Webb B, Adden A, Weddig NB, Honkanen A, Templin R, et al. An anatomically constrained model for path integration in the bee brain. Curr Biol. 2017;27(20):3069.e11–85.e11.
Article
CAS
Google Scholar
Blenau W, Schmidt M, Faensen D, Schürmann F-W. Neurons with dopamine-like immunoreactivity target mushroom body Kenyon cell somata in the brain of some hymenopteran insects. Int J Insect Morphol Embryol. 1999;28(3):203–10.
Article
Google Scholar
Shapira M, Thompson CK, Soreq H, Robinson GE. Changes in neuronal acetylcholinesterase gene expression and division of labor in honey bee colonies. J Mol Neurosci. 2001;17(1):1–12.
Article
CAS
PubMed
Google Scholar
De La Porte S, Vallette FM, Grassi J, Vigny M, Koenig J. Presynaptic or postsynaptic origin of acetylcholinesterase at neuromuscular junctions? An immunological study in heterologous nerve-muscle cultures. Dev Biol. 1986;116(1):69–77.
Article
Google Scholar
Zoli M. Distribution of cholinergic neurons in the mammalian brain with special reference to their relationship with neuronal nicotinic acetylcholine receptors. In: Clementi F, Fornasari D, Gotti C, editors. Neuronal nicotinic receptors. Berlin: Springer; 2000. p. 13–30.
Chapter
Google Scholar
Kim YH, Kim JH, Kim K, Lee SH. Expression of acetylcholinesterase 1 is associated with brood rearing status in the honey bee Apis mellifera. Sci Rep. 2017;7:39864.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zimmermann M. Neuronal AChE splice variants and their non-hydrolytic functions: redefining a target of AChE inhibitors? Br J Pharmacol. 2013;170(5):953–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barnstedt O, Owald D, Felsenberg J, Brain R, Moszynski J-P, Talbot Clifford B, et al. Memory-relevant mushroom body output synapses are cholinergic. Neuron. 2016;89(6):1237–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kahsai L, Carlsson MA, Winther ÅME, Nässel DR. Distribution of metabotropic receptors of serotonin, dopamine, GABA, glutamate, and short neuropeptide F in the central complex of Drosophila. Neuroscience. 2012;208:11–26.
Article
CAS
PubMed
Google Scholar
Hsu CT, Bhandawat V. Organization of descending neurons in Drosophila melanogaster. Sci Rep. 2016;6:20259.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hasegawa E, Truman JW, Nose A. Identification of excitatory premotor interneurons which regulate local muscle contraction during Drosophila larval locomotion. Sci Rep. 2016;6:30806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whitfield CW, Cziko A-M, Robinson GE. Gene expression profiles in the brain predict behavior in individual honey bees. Science. 2003;302(5643):296–9.
Article
CAS
PubMed
Google Scholar
Kaoru T, Fu-Chin L, Katsuiku H, Hiroshi T. Expression of Foxp4 in the developing and adult rat forebrain. J Neurosci Res. 2008;86(14):3106–16.
Article
CAS
Google Scholar
Teramitsu I, Kudo LC, London SE, Geschwind DH, White SA. Parallel oxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. J Neurosci. 2004;24(13):3152–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaoru T, Fu-Chin L, Katsuiku H, Hiroshi T. Expression of Foxp2, a gene involved in speech and language, in the developing and adult striatum. J Neurosci Res. 2003;73(1):61–72.
Article
CAS
Google Scholar
Graybiel AM, Aosaki T, Flaherty AW, Kimura M. The basal ganglia and adaptive motor control. Science. 1994;265(5180):1826.
Article
CAS
PubMed
Google Scholar
DeLong MR, Georgopoulos AP. Motor functions of the basal ganglia. London: Wiley; 2011.
Book
Google Scholar
Tewari A, Jog R, Jog MS. The striatum and subthalamic nucleus as independent and collaborative structures in motor control. Front Syst Neurosci. 2016;10:17.
Article
PubMed
PubMed Central
Google Scholar
Tecuapetla F, Jin X, Lima SQ, Costa RM. Complementary contributions of striatal projection pathways to action initiation and execution. Cell. 2016;166(3):703–15.
Article
CAS
PubMed
Google Scholar
Varga AG, Kathman ND, Martin JP, Guo P, Ritzmann RE. Spatial navigation and the central complex: sensory acquisition, orientation, and motor control. Front Behav Neurosci. 2017;11:4.
Article
PubMed
PubMed Central
Google Scholar
Martin JP, Guo P, Mu L, Harley CM, Ritzmann RE. Central-complex control of movement in the freely walking cockroach. Curr Biol. 2015;25(21):2795–803.
Article
CAS
PubMed
Google Scholar
Strauss R. The central complex and the genetic dissection of locomotor behaviour. Curr Opin Neurobiol. 2002;12(6):633–8.
Article
CAS
PubMed
Google Scholar
Christensen TA, Waldrop BR, Harrow ID, Hildebrand JG. Local interneurons and information processing in the olfactory glomeruli of the moth Manduca sexta. J Comp Physiol A. 1993;173(4):385–99.
Article
CAS
PubMed
Google Scholar
Nässel DR. Histamine in the brain of insects: a review. Microsc Res Tech. 1999;44(2–3):121–36.
Article
PubMed
Google Scholar
McQuillan HJ, Nakagawa S, Mercer AR. Mushroom bodies of the honeybee brain show cell population-specific plasticity in expression of amine-receptor genes. Learn Memory. 2012;19(4):151–8.
Article
CAS
Google Scholar
Suenami S, Oya S, Kohno H, Kubo T. Kenyon cell subtypes/populations in the honeybee mushroom bodies: possible function based on their gene expression profiles, differentiation, possible evolution, and application of genome editing. Front Psychol. 2018;9:1717.
Article
PubMed
PubMed Central
Google Scholar
Dacks AM, Reisenman CE, Paulk AC, Nighorn AJ. Histamine-immunoreactive local neurons in the antennal lobes of the hymenoptera. J Comp Neurol. 2010;518(15):2917–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Juárez-Morales JL, Schulte CJ, Pezoa SA, Vallejo GK, Hilinski WC, England SJ, et al. Evx1 and Evx2 specify excitatory neurotransmitter fates and suppress inhibitory fates through a Pax2-independent mechanism. Neural Dev. 2016;11(1):5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Borromeo MD, Meredith DM, Castro DS, Chang JC, Tung K-C, Guillemot F, et al. A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord. Development. 2014;141(14):2803–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdi A, Mallet N, Mohamed FY, Sharott A, Dodson PD, Nakamura KC, et al. Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. J Neurosci. 2015;35(17):6667–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verstegen AMJ, Vanderhorst V, Gray PA, Zeidel ML, Geerling JC. Barrington’s nucleus: neuroanatomic landscape of the mouse “pontine micturition center”. J Comp Neurol. 2017;525(10):2287–309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geerling JC, Kim M, Mahoney CE, Abbott SBG, Agostinelli LJ, Garfield AS, et al. Genetic identity of thermosensory relay neurons in the lateral parabrachial nucleus. Am J Physiol Regul Integr Comp Physiol. 2016;310(1):R41–54.
Article
PubMed
Google Scholar
Geerling JC, Yokota S, Rukhadze I, Roe D, Chamberlin NL. Kölliker-Fuse GABAergic and glutamatergic neurons project to distinct targets. J Comp Neurol. 2017;525(8):1844–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rousso David L, Pearson Caroline A, Gaber ZB, Miquelajauregui A, Li S, Portera-Cailliau C, et al. Foxp-mediated suppression of N-cadherin regulates neuroepithelial character and progenitor maintenance in the CNS. Neuron. 2012;74(2):314–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rousso DL, Gaber ZB, Wellik D, Morrisey EE, Novitch BG. Coordinated actions of the Forkhead protein Foxp1 and hox proteins in the columnar organization of spinal motor neurons. Neuron. 2008;59(2):226–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dasen JS, De Camilli A, Wang B, Tucker PW, Jessell TM. Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1. Cell. 2008;134(2):304–16.
Article
CAS
PubMed
Google Scholar
Morikawa Y, Komori T, Hisaoka T, Senba E. Detailed expression pattern of Foxp1 and Its possible roles in neurons of the spinal cord during embryogenesis. Dev Neurosci. 2009;31(6):511–22.
Article
CAS
PubMed
Google Scholar
Seeley TD. Honeybee democracy. Princeton: Princeton University Press; 2010.
Google Scholar
Groh C, Lu Z, Meinertzhagen IA, Rössler W. Age-related plasticity in the synaptic ultrastructure of neurons in the mushroom body calyx of the adult honeybee Apis mellifera. J Comp Neurol. 2012;520(15):3509–27.
Article
PubMed
Google Scholar
Gehring KB, Heufelder K, Kersting I, Eisenhardt D. Abundance of phosphorylated Apis mellifera CREB in the honeybee’s mushroom body inner compact cells varies with age. J Comp Neurol. 2016;524(6):1165–80.
Article
CAS
PubMed
Google Scholar
Gehring KB, Heufelder K, Depner H, Kersting I, Sigrist SJ, Eisenhardt D. Age-associated increase of the active zone protein Bruchpilot within the honeybee mushroom body. PLoS ONE. 2017;12(4):e0175894.
Article
PubMed
PubMed Central
CAS
Google Scholar
Amdam GV, Omholt SW. The regulatory anatomy of honeybee lifespan. J Theor Biol. 2002;216(2):209–28.
Article
PubMed
Google Scholar
Fahrbach SE, Van Nest BN. Synapsin-based approaches to brain plasticity in adult social insects. Curr Opin Insect Sci. 2016;18(Supplement C):27–34.
Article
PubMed
Google Scholar
Han B, Fang Y, Feng M, Hu H, Qi Y, Huo X, et al. Quantitative Neuropeptidome analysis reveals neuropeptides are correlated with social behavior regulation of the honeybee workers. J Proteome Res. 2015;14(10):4382–93.
Article
CAS
PubMed
Google Scholar
Steinmann N, Corona M, Neumann P, Dainat B. Overwintering is associated with reduced expression of immune genes and higher susceptibility to virus infection in honey bees. PLoS ONE. 2015;10(6):e0129956.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bonnafé E, Alayrangues J, Hotier L, Massou I, Renom A, Souesme G, et al. Monoterpenoid-based preparations in beehives affect learning, memory, and gene expression in the bee brain. Environ Toxicol Chem. 2017;36(2):337–45.
Article
PubMed
CAS
Google Scholar
Cardoso-Júnior CAM, Eyer M, Dainat B, Hartfelder K, Dietemann V. Social context influences the expression of DNA methyltransferase genes in the honeybee. Sci Rep. 2018;8(1):11076.
Article
PubMed
PubMed Central
CAS
Google Scholar
Spitzer NC. Neurotransmitter switching in the developing and adult brain. Annu Rev Neurosci. 2017;40(1):1–19.
Article
CAS
PubMed
Google Scholar