Boneschi FM, Vacchi L, Rovaris M, Capra R, Comi G. Mitoxantrone for multiple sclerosis. Cochrane Database Syst Rev. 2013(5).
Hartung H-P, Gonsette R, Konig N, Kwiecinski H, Guseo A, Morrissey SP, et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. The Lancet. 2002;360(9350):2018–25.
Google Scholar
Cotte S, Von Ahsen N, Kruse N, Huber B, Winkelmann A, Zettl UK, et al. ABC-transporter gene-polymorphisms are potential pharmacogenetic markers for mitoxantrone response in multiple sclerosis. Brain. 2009;132(9):2517–30.
CAS
PubMed
Google Scholar
English C, Aloi JJ. New FDA-approved disease-modifying therapies for multiple sclerosis. Clin Ther. 2015;37(4):691–715.
CAS
PubMed
Google Scholar
Carrá A, Macías-Islas MÁ, Gabbai AA, Correale J, Bolaña C, Sotelo ED, et al. Optimizing outcomes in multiple sclerosis: consensus guidelines for the diagnosis and treatment of multiple sclerosis in Latin America. Ther Adv Neurol Disord. 2011;4(6):349–60.
PubMed
PubMed Central
Google Scholar
Dunn CJ, Goa KL. Mitoxantrone. Drugs Aging. 1996;9(2):122–47.
CAS
PubMed
Google Scholar
Goldenberg MM. Multiple sclerosis review. Pharm Therap. 2012;37(3):175.
Google Scholar
Scott LJ, Figgitt DP. Mitoxantrone. CNS Drugs. 2004;18(6):379–96.
CAS
PubMed
Google Scholar
Stroet A, Hemmelmann C, Starck M, Zettl U, Dörr J, Paul F, et al. Incidence of therapy-related acute leukaemia in mitoxantrone-treated multiple sclerosis patients in Germany. Ther Adv Neurol Disord. 2012;5(2):75–9.
CAS
PubMed
PubMed Central
Google Scholar
Buttmann M, Seuffert L, Mäder U, Toyka KV. Malignancies after mitoxantrone for multiple sclerosis: a retrospective cohort study. Neurology. 2016;86(23):2203–7.
CAS
PubMed
PubMed Central
Google Scholar
Motl RW, Sandroff BM. Benefits of exercise training in multiple sclerosis. Curr Neurol Neurosci Rep. 2015;15(9):62.
PubMed
Google Scholar
White LJ, Castellano V. Exercise and brain health—implications for multiple sclerosis. Sports Med. 2008;38(2):91–100.
PubMed
Google Scholar
Castellano V, Patel DI, White LJ. Cytokine responses to acute and chronic exercise in multiple sclerosis. J Appl Physiol. 2008;104(6):1697–702.
CAS
PubMed
Google Scholar
Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci. 2004;20(10):2580–90.
PubMed
Google Scholar
El-Emam MA, El Achy S, Abdallah DM, El-Abhar HS, Gowayed MA. Neuroprotective role of galantamine with/without physical exercise in experimental autoimmune encephalomyelitis in rats. Life Sci. 2021;277:119459.
CAS
PubMed
Google Scholar
Wallström E, Olsson T. Rat models of experimental autoimmune encephalomyelitis. In: Michael Conn P, editor. Sourcebook of models for biomedical research. Totowa: Springer; 2008. p. 547–56.
Google Scholar
Weilbach F, Chan A, Toyka K, Gold R. The cardioprotector dexrazoxane augments therapeutic efficacy of mitoxantrone in experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2004;135(1):49–55.
CAS
PubMed
PubMed Central
Google Scholar
Sloboda AE, Oronsky AL, Kerwar S. Studies of the effect of mitoxantrone on adjuvant induced arthritis in rats. Clin Immunol Immunopathol. 1986;40(2):236–43.
CAS
PubMed
Google Scholar
Aharoni R, Rosen C, Shezen E, Bar-Lev DD, Golani O, Reisner Y, et al. Assessing remyelination-metabolic labeling of myelin in an animal model of multiple sclerosis. J Neuroimmunol. 2016;301:7–11.
CAS
PubMed
Google Scholar
Mikita J, Dubourdieu-Cassagno N, Deloire MS, Vekris A, Biran M, Raffard G, et al. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis Amelioration of clinical status by M2 activated monocyte administration. Mult Scler J. 2011;17(1):2–15.
CAS
Google Scholar
Zhang F, Zhang B, Shen R, Xu X, Guo L, Wang Y, et al. The scutellaria baicalensis stem-leaf total flavonoid regulates the balance of Th17/Treg in EAE rats. Int J Clin Exp Med. 2017;10(2):2408–18.
CAS
Google Scholar
Bernardes D, Oliveira-Lima OC, da Silva TV, Faraco CCF, Leite HR, Juliano MA, et al. Differential brain and spinal cord cytokine and BDNF levels in experimental autoimmune encephalomyelitis are modulated by prior and regular exercise. J Neuroimmunol. 2013;264(1–2):24–34.
CAS
PubMed
Google Scholar
Patel DI, White LJ. Effect of 10-day forced treadmill training on neurotrophic factors in experimental autoimmune encephalomyelitis. Appl Physiol Nutr Metab. 2013;38(2):194–9.
CAS
PubMed
Google Scholar
Baker D, O’neill J, Davison A, Turk J. Control of immune-mediated disease of the central nervous system requires the use of a neuroactive agent: elucidation by the action of mitoxantrone. Clin Exp Immunol. 1992;90(1):124–8.
CAS
PubMed
PubMed Central
Google Scholar
Watson CM, Davison AN, Baker D, O’Neill JK, Turk JL. Suppression of demyelination by mitoxantrone. Int J Immunopharmacol. 1991;13(7):923–30.
CAS
PubMed
Google Scholar
Al-Izki S, Pryce G, Hankey DJ, Lidster K, von Kutzleben SM, Browne L, et al. Lesional-targeting of neuroprotection to the inflammatory penumbra in experimental multiple sclerosis. Brain. 2013;137(1):92–108.
PubMed
Google Scholar
van den Berg R, Laman JD, van Meurs M, Hintzen RQ, Hoogenraad CC. Rotarod motor performance and advanced spinal cord lesion image analysis refine assessment of neurodegeneration in experimental autoimmune encephalomyelitis. J Neurosci Methods. 2016;262:66–76.
PubMed
Google Scholar
Shaw MA, Gao Z, McElhinney KE, Thornton S, Flick MJ, Lane A, et al. Plasminogen deficiency delays the onset and protects from demyelination and paralysis in autoimmune neuroinflammatory disease. J Neurosci. 2017;37(14):3776–88.
CAS
PubMed
PubMed Central
Google Scholar
Uzawa A, Mori M, Masuda H, Ohtani R, Uchida T, Kuwabara S. Recombinant thrombomodulin ameliorates experimental autoimmune encephalomyelitis by suppressing high mobility group box 1 and inflammatory cytokines. Clin Exp Immunol. 2018;193(1):47–54.
CAS
PubMed
PubMed Central
Google Scholar
Bernardes D, Oliveira ALRD. Regular exercise modifies histopathological outcomes of pharmacological treatment in experimental autoimmune encephalomyelitis. Front Neurol. 2018;9:950.
PubMed
PubMed Central
Google Scholar
Bernardes D, Oliveira ALR. Comprehensive catwalk gait analysis in a chronic model of multiple sclerosis subjected to treadmill exercise training. BMC Neurol. 2017;17(1):160.
PubMed
PubMed Central
Google Scholar
Gentile A, Musella A, De Vito F, Rizzo FR, Fresegna D, Bullitta S, et al. Immunomodulatory effects of exercise in experimental multiple sclerosis. Front Immunol. 2019;10:2197.
CAS
PubMed
PubMed Central
Google Scholar
Xie Y, Li Z, Wang Y, Xue X, Ma W, Zhang Y, et al. Effects of moderate-versus high-intensity swimming training on inflammatory and CD4+ T cell subset profiles in experimental autoimmune encephalomyelitis mice. J Neuroimmunol. 2019;328:60–7.
CAS
PubMed
Google Scholar
Bir SC, Chernyshev OY, Minagar A. Roles of Macrophages and Astrocytes in Pathogenesis of Multiple Sclerosis. Neuroinflammation: Elsevier; 2018. p. 517-28. https://doi.org/10.1016/B978-0-12-811709-5.00028-4
Okada Y, Ochi H, Fujii C, Hashi Y, Hamatani M, Ashida S, et al. Signaling via toll-like receptor 4 and CD40 in B cells plays a regulatory role in the pathogenesis of multiple sclerosis through interleukin-10 production. J Autoimmun. 2018;88:103–13.
CAS
PubMed
Google Scholar
Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23:683–747.
CAS
PubMed
Google Scholar
Bielekova B, Martin R. Development of biomarkers in multiple sclerosis. Brain. 2004;127(7):1463–78.
PubMed
Google Scholar
Villarroya H, Violleau K, Younes-Chennoufi AB, Baumann N. Myelin-induced experimental allergic encephalomyelitis in Lewis rats: tumor necrosis factor α levels in serum and cerebrospinal fluid Immunohistochemical expression in glial cells and macrophages of optic nerve and spinal cord. J Neuroimmunol. 1996;64(1):55–61.
CAS
PubMed
Google Scholar
Gbadamosi J, Buhmann C, Tessmer W, Moench A, Haag F, Heesen C. Effects of mitoxantrone on multiple sclerosis patients’ lymphocyte subpopulations and production of immunoglobulin, TNF-alpha and IL-10. Eur Neurol. 2003;49(3):137–41.
CAS
PubMed
Google Scholar
Luchtman DW, Ellwardt E, Larochelle C, Zipp F. IL-17 and related cytokines involved in the pathology and immunotherapy of multiple sclerosis: current and future developments. Cytokine Growth Factor Rev. 2014;25(4):403–13.
CAS
PubMed
Google Scholar
Katsavos S, Anagnostouli M. Biomarkers in multiple sclerosis: an up-to-date overview. Mult Scler Int. 2013. https://doi.org/10.1155/2013/340508.
Article
PubMed
PubMed Central
Google Scholar
Paap BK, Hecker M, Koczan D, Zettl UK. Molecular biomarkers in multiple sclerosis. J Clin Cell Immunol. 2013;10(4):34–65.
Google Scholar
Imitola J, Chitnis T, Khoury SJ. Cytokines in multiple sclerosis: from bench to bedside. Pharmacol Ther. 2005;106(2):163–77.
CAS
PubMed
Google Scholar
Dombrowski Y, O’hagan T, Dittmer M, Penalva R, Mayoral SR, Bankhead P, et al. Regulatory T cells promote myelin regeneration in the central nervous system. Nat Neurosci. 2017;20(5):674–80.
CAS
PubMed
PubMed Central
Google Scholar
Irony-Tur-Sinai M, Grigoriadis N, Tsiantoulas D, Touloumi O, Abramsky O, Brenner T. Immunomodulation of EAE by alpha-fetoprotein involves elevation of immune cell apoptosis markers and the transcription factor FoxP3. J Neurol Sci. 2009;279(1–2):80–7.
CAS
PubMed
Google Scholar
Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez J, Melamed R, et al. Foxp3 transcription-factor-dependent and-independent regulation of the regulatory T cell transcriptional signature. Immunity. 2007;27(5):786–800.
CAS
PubMed
Google Scholar
Gavin MA, Torgerson TR, Houston E, DeRoos P, Ho WY, Stray-Pedersen A, et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci. 2006;103(17):6659–64.
CAS
PubMed
PubMed Central
Google Scholar
Korn T, Reddy J, Gao W, Bettelli E, Awasthi A, Petersen TR, et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med. 2007;13(4):423–31.
CAS
PubMed
PubMed Central
Google Scholar
Hanes WM, Olofsson PS, Kwan K, Hudson LK, Chavan SS, Pavlov VA, et al. Galantamine attenuates type 1 diabetes and inhibits anti-insulin antibodies in nonobese diabetic mice. Mol Med. 2015;21(1):702–8.
CAS
PubMed
PubMed Central
Google Scholar
D’Arena G, Simeon V, D’Auria F, Statuto T, Di Sanzo P, De Martino L, et al. Regulatory T-cells in chronic lymphocytic leukemia: actor or innocent bystander? Am J blood research. 2013;3(1):52.
Google Scholar
Ahmed Z, Doward AI, Pryce G, Taylor DL, Pocock JM, Leonard JP, et al. A role for caspase-1 and-3 in the pathology of experimental allergic encephalomyelitis: inflammation versus degeneration. Am J Pathol. 2002;161(5):1577–86.
CAS
PubMed
PubMed Central
Google Scholar
Meyer R, Weissert R, Diem R, Storch MK, de Graaf KL, Kramer B, et al. Acute neuronal apoptosis in a rat model of multiple sclerosis. J Neurosci. 2001;21(16):6214–20.
CAS
PubMed
PubMed Central
Google Scholar
Kim T-W, Sung Y-H. Regular exercise promotes memory function and enhances hippocampal neuroplasticity in experimental autoimmune encephalomyelitis mice. Neuroscience. 2017;346:173–81.
CAS
PubMed
Google Scholar
Duarte-Silva E, da Rocha Araújo SM, Oliveira WH, de Lós DB, de França MER, Bonfanti AP, et al. Sildenafil ameliorates EAE by decreasing apoptosis in the spinal cord of C57BL/6 mice. J Neuroimmunol. 2018;321:125–37.
CAS
PubMed
Google Scholar
Zidan A, Hedya SE, Elfeky DM, Abdin AA. The possible anti-apoptotic and antioxidant effects of acetyl l-carnitine as an add-on therapy on a relapsing-remitting model of experimental autoimmune encephalomyelitis in rats. Biomed Pharmacother. 2018;103:1302–11.
CAS
PubMed
Google Scholar
Prokop A, Wieder T, Sturm I, Eβmann F, Seeger K, Wuchter C, et al. Relapse in childhood acute lymphoblastic leukemia is associated with a decrease of the Bax/Bcl-2 ratio and loss of spontaneous caspase-3 processing in vivo. Leukemia. 2000;14(9):1606–13.
CAS
PubMed
Google Scholar
Kalantzis ED, Scorilas A, Vassilacopoulou D. Evidence for L-Dopa decarboxylase involvement in cancer cell cytotoxicity induced by docetaxel and mitoxantrone. Curr Pharm Biotechnol. 2018;19(13):1087–96.
CAS
PubMed
Google Scholar
Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Prasad SVN, et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Investig. 2014;124(2):617–30.
CAS
PubMed
PubMed Central
Google Scholar
Douarre C, Sourbier C, Dalla Rosa I, Das BB, Redon CE, Zhang H, et al. Mitochondrial topoisomerase I is critical for mitochondrial integrity and cellular energy metabolism. PLoS ONE. 2012;7(7):e41094.
CAS
PubMed
PubMed Central
Google Scholar
Neuhaus O, Kieseier BC, Hartung H-P. Therapeutic role of mitoxantrone in multiple sclerosis. Pharmacol Ther. 2006;109(1–2):198–209.
CAS
PubMed
Google Scholar
Neuhaus O, Wiendl H, Kieseier BC, Archelos JJ, Hemmer B, Stüve O, et al. Multiple sclerosis: mitoxantrone promotes differential effects on immunocompetent cells in vitro. J Neuroimmunol. 2005;168(1–2):128–37.
CAS
PubMed
Google Scholar
Batra VK, Morrison JA, Woodward DL, Siverd NS, Yacobi A. Pharmacokinetics of mitoxantrone in man and laboratory animals. Drug Metab Rev. 1986;17(3–4):311–29.
CAS
PubMed
Google Scholar
Shenkenberg TD, von Hoff DD. Mitoxantrone: a new anticancer drug with significant clinical activity. Ann Intern Med. 1986;105(1):67–81.
CAS
PubMed
Google Scholar
Williams DL. Ocular disease in rats: a review. Veterinary ophthalmology. 2002;5(3):183–91.
PubMed
PubMed Central
Google Scholar