Bertolazzi P, Bock ME, Guerra C. On the functional and structural characterization of hubs in protein-protein interaction networks. Biotechnol Adv. 2013;31:274–86.
Article
CAS
PubMed
Google Scholar
Levy ED, Pereira-Leal JB. Evolution and dynamics of protein interactions and networks. Curr Opin Struct Biol. 2008;18:349–57.
Article
CAS
PubMed
Google Scholar
Przytycka TM, Singh M, Slonim DK. Toward the dynamic interactome: it’s about time. Brief Bioinform. 2010;11:15–29.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stelzl U, Wanker EE. The value of high quality protein-protein interaction networks for systems biology. Curr Opin Chem Biol. 2006;10:551–8.
Article
CAS
PubMed
Google Scholar
Vidal M, Cusick ME, Barabasi AL. Interactome networks and human disease. Cell. 2011;144:986–98.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jansen R, Greenbaum D, Gerstein M. Relating whole-genome expression data with protein-protein interactions. Genome Res. 2002;12:37–46.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tuncbag N, Kar G, Gursoy A, Keskin O, Nussinov R. Towards inferring time dimensionality in protein-protein interaction networks by integrating structures: the p53 example. Mol Biosyst. 2009;5:1770–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
de Lichtenberg U, Jensen LJ, Brunak S, Bork P. Dynamic complex formation during the yeast cell cycle. Science. 2005;307:724–7.
Article
PubMed
Google Scholar
Srihari S, Leong HW. Temporal dynamics of protein complexes in PPI networks: a case study using yeast cell cycle dynamics. BMC Bioinf. 2012;17(13 Suppl):S16.
Google Scholar
Tang X, Wang J, Liu B, Li M, Chen G, Pan Y. A comparison of the functional modules identified from time course and static PPI network data. BMC Bioinf. 2011;12:339.
Article
CAS
Google Scholar
Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, et al. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol. 2009;27:199–204.
Article
CAS
PubMed
Google Scholar
Wang J, Peng X, Li M, Pan Y. Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics. 2013;13:301–12.
Article
CAS
PubMed
Google Scholar
Vlasblom J, Wodak SJ. Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinf. 2009;10:99.
Article
Google Scholar
Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex networks in nature and society. Nature. 2005;435:814–8.
Article
CAS
PubMed
Google Scholar
Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinf. 2003;4:2.
Article
Google Scholar
Ciriello G, Mina M, Guzzi PH, Cannataro M, Guerra C. AlignNemo: a local network alignment method to integrate homology and topology. PLoS One. 2012;7:e38107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Arisi I, D’Onofrio M, Brandi R, Felsani A, Capsoni S, Drovandi G, et al. Gene expression biomarkers in the brain of a mouse model for Alzheimer’s disease: mining of microarray data by logic classification and feature selection. J Alzheimers Dis. 2011;24:721–38.
CAS
PubMed
Google Scholar
D’Onofrio M, Arisi I, Brandi R, Di Mambro A, Felsani A, Capsoni S, et al. Early inflammation and immune response mRNAs in the brain of AD11 anti-NGF mice. Neurobiol Aging. 2011;32:1007–22.
Article
PubMed
Google Scholar
Capsoni S, Brandi R, Arisi I, D’Onofrio M, Cattaneo A. A dual mechanism linking NGF/proNGF imbalance and early inflammation to Alzheimer’s disease neurodegeneration in the AD11 anti-NGF mouse model. CNS Neurol Disord Drug Targets. 2011;10:635–47.
Article
CAS
PubMed
Google Scholar
Ruberti F, Capsoni S, Comparini A, Di Daniel E, Franzot J, Gonfloni S, et al. Phenotypic knockout of nerve growth factor in adult transgenic mice reveals severe deficits in basal forebrain cholinergic neurons, cell death in the spleen, and skeletal muscle dystrophy. J Neurosci. 2000;20:2589–601.
CAS
PubMed
Google Scholar
Fujiyama S, Yanagida M, Hayano T, Miura Y, Isobe T, Fujimori F, et al. Isolation and proteomic characterization of human Parvulin-associating preribosomal ribonucleoprotein complexes. J Biol Chem. 2002;277:23773–80.
Article
CAS
PubMed
Google Scholar
Mueller JW, Bayer P. Small family with key contacts: par14 and par17 parvulin proteins, relatives of pin1, now emerge in biomedical research. Perspect Medicin Chem. 2008;2:11–20.
PubMed Central
CAS
PubMed
Google Scholar
Ando K, Dourlen P, Sambo AV, Bretteville A, Belarbi K, Vingtdeux V, et al. Tau pathology modulates Pin1 post-translational modifications and may be relevant as biomarker. Neurobiol Aging. 2013;34:757–69.
Article
CAS
PubMed
Google Scholar
Kimura T, Tsutsumi K, Taoka M, Saito T, Masuda-Suzukake M, Ishiguro K, et al. Isomerase Pin1 stimulates dephosphorylation of tau protein at cyclin-dependent kinase (Cdk5)-dependent Alzheimer phosphorylation sites. J Biol Chem. 2013;288:7968–77.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pastorino L, Ma SL, Balastik M, Huang P, Pandya D, Nicholson L, et al. Alzheimer’s disease-related loss of Pin1 function influences the intracellular localization and the processing of AbetaPP. J Alzheimers Dis. 2012;30:277–97.
CAS
PubMed
Google Scholar
Wang JZ, Zhang YH, Sun XW, Li YL, Li SR, Zhang Y, et al. Focusing on the structure and the function of Pin1: new insights into the opposite effects of fever on cancers and Alzheimer’s disease. Med Hypotheses. 2013;81:282–4.
Article
CAS
PubMed
Google Scholar
Jung C, Mittler G, Oswald F, Borggrefe T. RNA helicase Ddx5 and the noncoding RNA SRA act as coactivators in the Notch signaling pathway. Biochim Biophys Acta. 1833;2013:1180–9.
Google Scholar
Ghosh S, Thakur MK. Interaction of estrogen receptor-alpha transactivation domain with nuclear proteins of mouse brain: p68 RNA helicase shows age- and sex-specific change. J Neurosci Res. 2009;87:1323–8.
Article
CAS
PubMed
Google Scholar
Arun G, Akhade VS, Donakonda S, Rao MR. mrhl RNA, a long noncoding RNA, negatively regulates Wnt signaling through its protein partner Ddx5/p68 in mouse spermatogonial cells. Mol Cell Biol. 2012;32:3140–52.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang R, Jiao Z, Li R, Yue H, Chen L. p68 RNA helicase promotes glioma cell proliferation in vitro and in vivo via direct regulation of NF-kappaB transcription factor p50. Neuro Oncol. 2012;14:1116–24.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kar A, Fushimi K, Zhou X, Ray P, Shi C, Chen X, et al. RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5′ splice site. Mol Cell Biol. 2011;31:1812–21.
Article
PubMed Central
CAS
PubMed
Google Scholar
Agholme L, Nath S, Domert J, Marcusson J, Kagedal K, Hallbeck M. Proteasome inhibition induces stress kinase dependent transport deficits–implications for Alzheimer’s disease. Mol Cell Neurosci. 2014;58:29–39.
Article
CAS
PubMed
Google Scholar
Chesser AS, Pritchard SM, Johnson GV. Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front Neurol. 2013;4:122.
Article
PubMed Central
PubMed
Google Scholar
Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol. 2014;112:24–49.
Article
CAS
PubMed
Google Scholar
Saido T, Leissring MA. Proteolytic degradation of amyloid beta-protein. Cold Spring Harb Perspect Med. 2012;2:a006379.
Article
PubMed Central
PubMed
Google Scholar
Cecarini V, Bonfili L, Amici M, Angeletti M, Keller JN, Eleuteri AM. Amyloid peptides in different assembly states and related effects on isolated and cellular proteasomes. Brain Res. 2008;1209:8–18.
Article
CAS
PubMed
Google Scholar
Orre M, Kamphuis W, Dooves S, Kooijman L, Chan ET, Kirk CJ, et al. Reactive glia show increased immunoproteasome activity in Alzheimer’s disease. Brain. 2013;136:1415–31.
Article
PubMed
Google Scholar
Yen SS. Proteasome degradation of brain cytosolic tau in Alzheimer’s disease. Int J Clin Exp Pathol. 2011;4:385–402.
PubMed Central
CAS
PubMed
Google Scholar
Ferrington DA, Gregerson DS. Immunoproteasomes: structure, function, and antigen presentation. Prog Mol Biol Transl Sci. 2012;109:75–112.
Article
PubMed Central
CAS
PubMed
Google Scholar
Foss GS, Larsen F, Solheim J, Prydz H. Constitutive and interferon-gamma-induced expression of the human proteasome subunit multicatalytic endopeptidase complex-like 1. Biochim Biophys Acta. 1998;1402:17–28.
Article
CAS
PubMed
Google Scholar
Hussong SA, Kapphahn RJ, Phillips SL, Maldonado M, Ferrington DA. Immunoproteasome deficiency alters retinal proteasome’s response to stress. J Neurochem. 2010;113:1481–90.
PubMed Central
CAS
PubMed
Google Scholar
Heink S, Ludwig D, Kloetzel PM, Kruger E. IFN-gamma-induced immune adaptation of the proteasome system is an accelerated and transient response. Proc Natl Acad Sci U S A. 2005;102:9241–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jia Y, Song T, Wei C, Ni C, Zheng Z, Xu Q, et al. Negative regulation of MAVS-mediated innate immune response by PSMA7. J Immunol. 2009;183:4241–8.
Article
CAS
PubMed
Google Scholar
Hu XT, Chen W, Zhang FB, Shi QL, Hu JB, Geng SM, et al. Depletion of the proteasome subunit PSMA7 inhibits colorectal cancer cell tumorigenicity and migration. Oncol Rep. 2009;22:1247–52.
CAS
PubMed
Google Scholar
Berhane S, Areste C, Ablack JN, Ryan GB, Blackbourn DJ, Mymryk JS, et al. Adenovirus E1A interacts directly with, and regulates the level of expression of, the immunoproteasome component MECL1. Virology. 2011;421:149–58.
Article
CAS
PubMed
Google Scholar
Aso E, Lomoio S, Lopez-Gonzalez I, Joda L, Carmona M, Fernandez-Yague N, et al. Amyloid generation and dysfunctional immunoproteasome activation with disease progression in animal model of familial Alzheimer’s disease. Brain Pathol. 2012;22:636–53.
Article
CAS
PubMed
Google Scholar
Mishto M, Bellavista E, Santoro A, Stolzing A, Ligorio C, Nacmias B, et al. Immunoproteasome and LMP2 polymorphism in aged and Alzheimer’s disease brains. Neurobiol Aging. 2006;27:54–66.
Article
CAS
PubMed
Google Scholar
Tsai KL, Tomomori-Sato C, Sato S, Conaway RC, Conaway JW, Asturias FJ. Subunit architecture and functional modular rearrangements of the transcriptional mediator complex. Cell. 2014;157:1430–44.
Article
CAS
PubMed
Google Scholar
Carlsten JO, Zhu X, Gustafsson CM. The multitalented Mediator complex. Trends Biochem Sci. 2013;38:531–7.
Article
CAS
PubMed
Google Scholar
Schiano C, Casamassimi A, Vietri MT, Rienzo M, Napoli C. The roles of mediator complex in cardiovascular diseases. Biochim Biophys Acta. 1839;2014:444–51.
Google Scholar
Wang X, Yang N, Uno E, Roeder RG, Guo S. A subunit of the mediator complex regulates vertebrate neuronal development. Proc Natl Acad Sci U S A. 2006;103:17284–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lande-Diner L, Boyault C, Kim JY, Weitz CJ. A positive feedback loop links circadian clock factor CLOCK-BMAL1 to the basic transcriptional machinery. Proc Natl Acad Sci U S A. 2013;110:16021–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Musiek ES, Lim MM, Yang G, Bauer AQ, Qi L, Lee Y, et al. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J Clin Invest. 2013;123:5389–400.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lariviere L, Plaschka C, Seizl M, Wenzeck L, Kurth F, Cramer P. Structure of the Mediator head module. Nature. 2012;492:448–51.
Article
CAS
PubMed
Google Scholar
Furumoto T, Tanaka A, Ito M, Malik S, Hirose Y, Hanaoka F, et al. A kinase subunit of the human mediator complex, CDK8, positively regulates transcriptional activation. Genes Cells. 2007;12:119–32.
Article
CAS
PubMed
Google Scholar
Soreq H. Novel roles of non-coding brain RNAs in health and disease. Front Mol Neurosci. 2014;7:55.
Article
PubMed Central
PubMed
Google Scholar
Kong Y, Wu J, Yuan L. MicroRNA expression analysis of adult-onset Drosophila Alzheimer’s disease model. Curr Alzheimer Res. 2014;11:882–91.
CAS
PubMed
Google Scholar
Rodriguez-Ortiz CJ, Baglietto-Vargas D, Martinez-Coria H, LaFerla FM, Kitazawa M. Upregulation of miR-181 decreases c-Fos and SIRT-1 in the hippocampus of 3xTg-AD mice. J Alzheimers Dis. 2014;42:1229–38.
CAS
PubMed
Google Scholar
Galimberti D, Villa C, Fenoglio C, Serpente M, Ghezzi L, Cioffi SM, et al. Circulating miRNAs as potential biomarkers in Alzheimer’s disease. J Alzheimers Dis. 2014;42:1261–7.
CAS
PubMed
Google Scholar
Tan L, Yu JT, Tan MS, Liu QY, Wang HF, Zhang W, et al. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J Alzheimers Dis. 2014;40:1017–27.
CAS
PubMed
Google Scholar
Lau P, Bossers K, Janky R, Salta E, Frigerio CS, Barbash S, et al. Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol Med. 2013;5:1613–34.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, et al. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci. 2008;28:1213–23.
Article
PubMed Central
PubMed
Google Scholar
Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, et al. Altered microRNA regulation in Huntington’s disease models. Exp Neurol. 2011;227:172–9.
Article
CAS
PubMed
Google Scholar
Hebert SS, Papadopoulou AS, Smith P, Galas MC, Planel E, Silahtaroglu AN, et al. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet. 2010;19:3959–69.
Article
CAS
PubMed
Google Scholar
Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M. The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron. 1991;7:337–47.
Article
CAS
PubMed
Google Scholar
El Ghazi I, Martin BL, Armitage IM. New proteins found interacting with brain metallothionein-3 are linked to secretion. Int J Alzheimers Dis. 2010;2011:208634.
PubMed Central
PubMed
Google Scholar
Luo Y, Xu Y, Bao Q, Ding Z, Zhu C, Huang ZX, et al. The molecular mechanism for human metallothionein-3 to protect against the neuronal cytotoxicity of Abeta(1–42) with Cu ions. J Biol Inorg Chem. 2013;18:39–47.
Article
CAS
PubMed
Google Scholar
Manso Y, Carrasco J, Comes G, Meloni G, Adlard PA, Bush AI, et al. Characterization of the role of metallothionein-3 in an animal model of Alzheimer’s disease. Cell Mol Life Sci. 2012;69:3683–700.
Article
CAS
PubMed
Google Scholar
Slaymaker IM, Chen XS. MCM structure and mechanics: what we have learned from archaeal MCM. Subcell Biochem. 2012;62:89–111.
Article
CAS
PubMed
Google Scholar
Bonda DJ, Evans TA, Santocanale C, Llosa JC, Vina J, Bajic V, et al. Evidence for the progression through S-phase in the ectopic cell cycle re-entry of neurons in Alzheimer disease. Aging (Albany NY). 2009;1:382–8.
PubMed Central
CAS
Google Scholar
Schrotter A, Mastalski T, Nensa FM, Neumann M, Loosse C, Pfeiffer K, et al. FE65 regulates and interacts with the Bloom syndrome protein in dynamic nuclear spheres - potential relevance to Alzheimer’s disease. J Cell Sci. 2013;126:2480–92.
Article
PubMed
Google Scholar
Frade JM, Ovejero-Benito MC. Neuronal cell cycle: the neuron itself and its circumstances. Cell Cycle. 2015;14:712–20.
PubMed
Google Scholar
Takata K, Kitamura Y, Nakata Y, Matsuoka Y, Tomimoto H, Taniguchi T, et al. Involvement of WAVE accumulation in Abeta/APP pathology-dependent tangle modification in Alzheimer’s disease. Am J Pathol. 2009;175:17–24.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yamamoto A, Behl C. Human Nck-associated protein 1 and its binding protein affect the metabolism of beta-amyloid precursor protein with Swedish mutation. Neurosci Lett. 2001;316:50–4.
Article
CAS
PubMed
Google Scholar
Kikugawa S, Nishikata K, Murakami K, Sato Y, Suzuki M, Altaf-Ul-Amin M, et al. PCDq: human protein complex database with quality index which summarizes different levels of evidences of protein complexes predicted from h-invitational protein-protein interactions integrative dataset. BMC Syst Biol. 2012;6 Suppl 2:S7.
Article
PubMed Central
PubMed
Google Scholar
Liu CT, Yuan S, Li KC. Patterns of co-expression for protein complexes by size in Saccharomyces cerevisiae. Nucleic Acids Res. 2009;37:526–32.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tornow S, Mewes HW. Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Res. 2003;31:6283–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Laganowsky A, Reading E, Hopper JT, Robinson CV. Mass spectrometry of intact membrane protein complexes. Nat Protoc. 2013;8:639–51.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cattaneo A, Rapposelli B, Calissano P. Three distinct types of monoclonal antibodies after long-term immunization of rats with mouse nerve growth factor. J Neurochem. 1988;50:1003–10.
Article
CAS
PubMed
Google Scholar
Covaceuszach S, Cassetta A, Konarev PV, Gonfloni S, Rudolph R, Svergun DI, et al. Dissecting NGF interactions with TrkA and p75 receptors by structural and functional studies of an anti-NGF neutralizing antibody. J Mol Biol. 2008;381:881–96.
Article
CAS
PubMed
Google Scholar
Ruepp A, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Stransky M, et al. CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res. 2008;36:D646–50.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hovatta I, Zapala MA, Broide RS, Schadt EE, Libiger O, Schork NJ, et al. DNA variation and brain region-specific expression profiles exhibit different relationships between inbred mouse strains: implications for eQTL mapping studies. Genome Biol. 2007;8:R25.
Article
PubMed Central
PubMed
Google Scholar