Coyle JT, Puttfarcken P: Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993, 262: 689-95.
Article
CAS
PubMed
Google Scholar
Lipton SA, Rosenberg PA: Excitatory amino acids as a final common pathway for neurologic disorder. N Engl J Med. 1994, 330: 613-22. 10.1056/NEJM199403033300907.
Article
CAS
PubMed
Google Scholar
Froissard P, Duval D: Cytotoxic effects of glutamic acid on PC12 cells. Neurochem Int. 1994, 24: 485-93. 10.1016/0197-0186(94)90096-5.
Article
CAS
PubMed
Google Scholar
Behl C, Widmann M, Trapp T, Holsboer F: 17β-estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem Biophys Res Commun. 1995, 216: 473-82. 10.1006/bbrc.1995.2647.
Article
CAS
PubMed
Google Scholar
Zhang YM, Lu XF, Bhavnani BR: Equine estrogens differentially inhibit DNA fragmentation induced by glutamate in neuronal cells by modulation of regulatory proteins involved in programmed cell death. BMC Neurosci. 2003, 4: 32-10.1186/1471-2202-4-32.
Article
PubMed Central
PubMed
Google Scholar
Zhang YM, Bhavnani BR: Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release. BMC Neurosci. 2005, 6: 13-10.1186/1471-2202-6-13.
Article
PubMed Central
PubMed
Google Scholar
Wolf BB, Goldstein JC, Stennicke HR, Beere H, Amarante-Mendes GP, Salvesen GS, Green DR: Calpain functions in a caspase-independent manner to promote apoptotic-like events during platelet activation. Blood. 1999, 94: 1683-92.
CAS
PubMed
Google Scholar
Villa PG, Henzel WJ, Sensenbrenner M, Henderson CE, Pettmann B: Calpain inhibitors, but not caspase inhibitors, prevent actin proteolysis and DNA fragmentation during apoptosis. J Cell Sci. 1998, 111: 713-22.
CAS
PubMed
Google Scholar
Lankiewicz S, Luetjens MC, Bui TN, Krohn AJ, Poppe M, Cole GM, Saido TC, Prehn JH: Activation of calpain I converts excitotoxic neuron death into a caspase-independent cell death. J of Biol Chem. 2000, 275: 17064-71. 10.1074/jbc.275.22.17064.
Article
CAS
Google Scholar
Cregan SP, Fortin A, MacLaurin JG, Callaghan SM, Cecconi F, Yu SW, Dawson TM, Dawson VL, Park DS, Kroemer , Slack RS: Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol. 2002, 158 (3): 507-17. 10.1083/jcb.200202130.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cande C, Cecconi F, Dessen P, Kroemer G: Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death?. J Cell Sci. 2002, 115: 4727-34. 10.1242/jcs.00210.
Article
CAS
PubMed
Google Scholar
Duchen MR: Mitochondria and calcium: from cell signalling to cell death. J Physiol. 2000, 529: 57-68. 10.1111/j.1469-7793.2000.00057.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Perrella J, Bhavnani BR: Protection of cortical cells by equine estrogens against glutamate-induced excitotoxicity is mediated through a calcium independent mechanism. BMC Neurosci. 2005, 6: 34-10.1186/1471-2202-6-34.
Article
PubMed Central
PubMed
Google Scholar
Atlante A, Calissano P, Bobba A, Giannattasio S, Marra E, Passarella S: Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS Lett. 2001, 497: 1-5. 10.1016/S0014-5793(01)02437-1.
Article
CAS
PubMed
Google Scholar
Atlante A, Calissano P, Bobba A, Azzariti A, Marra E, Passarella S: Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J Biol Chem. 2000, 275: 37159-66. 10.1074/jbc.M002361200.
Article
CAS
PubMed
Google Scholar
Brustovetsky N, Brustovetsky T, Jemmerson R, Dubinsky JM: Calcium-induced cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. J Neurochem. 2002, 80: 207-18. 10.1046/j.0022-3042.2001.00671.x.
Article
CAS
PubMed
Google Scholar
Daugas E, Nochy D, Ravagnan L, Loeffler M, Susin SA, Zamzami N, Kroemer G: Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett. 2000, 476: 118-23. 10.1016/S0014-5793(00)01731-2.
Article
CAS
PubMed
Google Scholar
Zhang X, Chen J, Graham SH, Du L, Kochanek PM, Draviam R, Guo F, Nathaniel PD, Szabo C, Watkins SC, Clark R: Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and neuronal cultures exposed to peroxynitrite. J Neurochem. 2002, 82: 181-91. 10.1046/j.1471-4159.2002.00975.x.
Article
CAS
PubMed
Google Scholar
Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL: Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science. 2002, 297: 259-63. 10.1126/science.1072221.
Article
CAS
PubMed
Google Scholar
Ray SK, Patel SJ, Welsh CT, Wilford GG, Hogan EL, Banik NL: Molecular evidence of apoptotic death in malignant brain tumors including glioblastoma multiforme: upregulation of calpain and caspase-3. J Neurosci Res. 2002, 69: 197-206. 10.1002/jnr.10265.
Article
CAS
PubMed
Google Scholar
Movsesyan VA, Stoica BA, Yakovlev AG, Knoblach SM, Lea PM, Cernak I, Vink R, Faden AI: Anandamide-induced cell death in primary neuronal cultures: role of calpain and caspase pathways. Cell Death Differentiation. 2004, 11: 1121-32. 10.1038/sj.cdd.4401442.
Article
CAS
PubMed
Google Scholar
Duan H, Orth K, Chinnaiyan AM, Poirier GG, Froelich CJ, He WW, Dixit VM: ICE-Lap6, a novel member of the ICE/Ced-3 gene family, is activated by the cytotoxic T cell protease granzyme B. J Biol Chem. 1996, 271: 16720-4. 10.1074/jbc.271.44.27863.
Article
CAS
PubMed
Google Scholar
Ray SK, Fidan M, Nowak MW, Wilford GG, Hogan EL, Banik NL: Oxidative stress and Ca2+ influx upregulate calpain and induce apoptosis in PC12 cells. Brain Res. 2000, 852: 326-34. 10.1016/S0006-8993(99)02148-4.
Article
CAS
PubMed
Google Scholar
Rami A: Ischemic neuronal death in the rat hippocampus: the calpain-calpastatin-caspase hypothesis. Neurobiol Dis. 2003, 13: 75-88. 10.1016/S0969-9961(03)00018-4.
Article
CAS
PubMed
Google Scholar
Pietrobon D, Di Virgilio F, Pozzan T: Structural and functional aspects of calcium homeostasis in eukaryotic cells. Eur J Biochem. 1990, 193: 599-622. 10.1111/j.1432-1033.1990.tb19378.x.
Article
CAS
PubMed
Google Scholar
Squier MK, Miller AC, Malkinson AM, Cohen JJ: Calpain activation in apoptosis. J Cell Physiol. 1994, 159: 229-37. 10.1002/jcp.1041590206.
Article
CAS
PubMed
Google Scholar
Debiasi RL, Squier MK, Pike B, Wynes M, Dermody TS, Cohen JJ, Tyler KL: Reovirus-induced apoptosis is preceded by increased cellular calpain activity and is blocked by calpain inhibitors. J Virol. 1999, 73 (1): 695-701.
PubMed Central
CAS
PubMed
Google Scholar
Rami A, Agarwal R, Botez G, Winckler J: mu-Calpain activation, DNA fragmentation, and synergistic effects of caspase and calpain inhibitors in protecting hippocampal neurons from ischemic damage. Brain Res. 2000, 866: 299-12. 10.1016/S0006-8993(00)02301-5.
Article
CAS
PubMed
Google Scholar
Zhang J, Miyamoto K, Hashioka S, Hao HP, Murao K, Saido TC, Nakanishi H: Activation of mu-calpain in developing cortical neurons following methylmercury treatment. Brain Res Dev Brain Res. 2003, 142: 105-10. 10.1016/S0165-3806(03)00057-9.
Article
CAS
PubMed
Google Scholar
Subbiah MT, Kessel B, Agrawal M, Rajan R, Abplanalp W, Rymaszewski Z: Antioxidant potential of specific estrogens on lipid peroxidation. J Clin Endocrinol Metab. 1993, 77: 1095-7. 10.1210/jc.77.4.1095.
CAS
PubMed
Google Scholar
Wilcox JG, Hwang J, Hodis HN, Sevanian A, Stanczyk FZ, Lobo RA: Cardioprotective effects of individual conjugated equine estrogens through their possible modulation of insulin resistance and oxidation of low-density lipoprotein. Fertil Steril. 1997, 67: 57-62. 10.1016/S0015-0282(97)81856-0.
Article
CAS
PubMed
Google Scholar
Bhavnani BR, Cecutti A, Gerulath A, Woolever AC, Berco M: Comparison of the antioxidant effects of equine estrogens, red wine components, vitamin E, and probucol on low-density lipoprotein oxidation in postmenopausal women. Menopause. 2001, 8: 408-19. 10.1097/00042192-200111000-00005.
Article
CAS
PubMed
Google Scholar
Berco M, Bhavnani BR: Differential neuroprotective effects of equine estrogens against oxidized low density lipoprotein-induced neuronal dell death. J Soc Gynecol Investi. 2001, 8: 245-54. 10.1016/S1071-5576(01)00111-3.
Article
CAS
Google Scholar
Shi J, Panickar KS, Yang SH, Rabbani O, Day AL, Simpkins JW: Estrogen attenuates over-expression of β-amyloid precursor protein messenger RNA in an animal model of focal ischemia. Brain Res. 1998, 810: 87-92. 10.1016/S0006-8993(98)00888-9.
Article
CAS
PubMed
Google Scholar
Bhavnani BR: Estrogens and menopause: pharmacology of conjugated equine estrogens and their potential role in the prevention of neurodegenerative diseases such as Alzheimer's. J Steroid Biochem Mol Biol. 2003, 85: 473-82. 10.1016/S0960-0760(03)00220-6.
Article
CAS
PubMed
Google Scholar
Tam SP, Bhavnani BR: Differential effects of various equine estrogens mediated via estrogen receptor. Endo 85th Ann Meeting. 2003, 104: abstract
Google Scholar
Brewer GJ: Serum free B27/neurobasal supports differentiated growth of neurons from the striatum, substantial nigra, septum, cerebral cortex, cerebellum and dentate gyrus. J Neurosci Res. 1995, 42: 674-83. 10.1002/jnr.490420510.
Article
CAS
PubMed
Google Scholar
Nilsen J, Mor G, Naftolin F: Raloxifene induces neurite outgrowth in estrogen receptor positive PC12 cells. Menopause. 1998, 5: 211-6.
Article
CAS
PubMed
Google Scholar
Gollapudi L, Oblinger MM: Estrogen and NGF synergistically protect terminally differentiated, ERalpha-transfected PC12 cells from apoptosis. J Neurosci Res. 1999, 56: 471-81. 10.1002/(SICI)1097-4547(19990601)56:5<471::AID-JNR3>3.0.CO;2-1.
Article
CAS
PubMed
Google Scholar
Bosch LV, Damme PV, Vleminckx V, Houtte EV, Lemmens G, Missiaen L, Callewaert G, Robberecht W: An α-mercaptoacrylic acid derivative (PD150606) inhibits selective mortor neuron death via inhibition of kainate-induced Ca2+ influx and not via calpain inhibition. Neuropharmaco. 2002, 42: 706-13. 10.1016/S0028-3908(02)00010-2.
Article
Google Scholar
Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA: Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology. 1997, 138: 863-70. 10.1210/en.138.3.863.
CAS
PubMed
Google Scholar
Wang KW: Calpain and caspase: can you tell the difference?. Trends Neurosci. 2000, 23: 20-6. 10.1016/S0166-2236(99)01479-4.
Article
PubMed
Google Scholar
Nath R, Raser KJ, Stafford D, Hajimothmmaderza I, Rosner A, Allen H, Talanian RV, Wang KW: Non-erythroid α-spectrin breakdown by calpain and interleukin1 β-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J. 1996, 319: 683-90.
Article
PubMed Central
CAS
PubMed
Google Scholar
Susin SA, Lorenzo HK, Zamzami N, Marao I, Snow B, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Kroemer G: Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999, 397 (4): 441-46.
CAS
PubMed
Google Scholar
Cande C, Cohen I, Daugas E, Ravagnan L, Larochette N, Zamzami N, Kroemer G: Apoptosis-inducing factor (AIF) : a novel caspase-independent death effector released from mitochondria. Biochem. 2002, 84: 215-22. 10.1016/S0300-9084(02)01374-3.
Article
CAS
Google Scholar
Moore JD, Rothwell NJ, Gibson RM: Involvement of caspases and calpains in cerebrocortical neuronal cell death is stimulus-dependent. Brit J of Pharmacol. 2002, 135: 1069-77. 10.1038/sj.bjp.0704538.
Article
CAS
Google Scholar
Pike BR, Zhao X, Newcomb JK, Glenm CC, Anderson DK, Hayes R: Stretch injury causes calpain and caspse-3 activation and necrotic and apoptotic cell death in septo-hippocampal cell cultures. J Neurotrauma. 2000, 17: 298.
Article
Google Scholar
Wang KKW, Posmantur RM, Nath R, McGinnis KM, Whitton M, Talanian RV, Glartz SB: Stimutaneous degradation of α II-or β II spectrin by caspase3 (CCP32) apoptotic cells. J Biol Chem. 1998, 273: 22490-97. 10.1074/jbc.273.35.22490.
Article
CAS
PubMed
Google Scholar
Beer R, Srinivasan A, Hayers RL, Pike BR, Newcomb JK, Zhao X, Schmutzhard E, Kampfl AJ: Temporal profile and cell subtype distribution of activated caspase-3 following experimental traumatic brain injury. J Neurochem. 2000, 75: 1264-73. 10.1046/j.1471-4159.2000.0751264.x.
Article
CAS
PubMed
Google Scholar
Iwamoto H, Miura T, Okamura T, Shirakawa K, Iwatate M, Kawamura S, Tatsuno H, Ikeda Y, Matsuzaki M: Calpain inhibitor-1 reduces infarct size and DNA fragmentation of myocardium in Ischemic/reperfused rat heart. J Cardiovas Pharmacol. 1999, 33: 580-86. 10.1097/00005344-199904000-00010.
Article
CAS
Google Scholar
Ray SK, Banik NL: Calpain and its involvement in the pathophysiology of CNS injuries and diseases: Therapeutic potential of calpain inhibitors for prevention of neurodegeration. Current Drug Targets-CNS & Neurol Disorders. 2003, 2: 173-89. 10.2174/1568007033482887.
Article
CAS
Google Scholar
Dutta S, Chiu YC, Probert AW, Wang KK: Selective release of calpain produced α II spectrin (α Fodrin) breakdown products by acute neuronal cell death. Biol Chem. 2002, 383: 785-91. 10.1515/BC.2002.082.
Article
CAS
PubMed
Google Scholar
Siman R, Noszek JC, Kegerise C: Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J Neurosci. 1989, 9 (5): 1579-90.
CAS
PubMed
Google Scholar
Saito K, Elce JS, Hamos JE, Nixon RA: Widespread activation of calcium-activated neutral protease (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc Natl Acad Sci USA. 1993, 90: 2628-32. 10.1073/pnas.90.7.2628.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bonfoco E: Apoptosis and necrosis, two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell culture. Proc NatlAcad Sci U.S.A. 1995, 92: 7162-6. 10.1073/pnas.92.16.7162.
Article
CAS
Google Scholar
Heron A: Reginal variability in DNA fragmentation after global ischemia evidence by combined histological and gel electrophoresis observations in the rat brain. J Neurochem. 1993, 61: 1973-76.
Article
CAS
PubMed
Google Scholar
Newcomb F, Zhao JK, Pike X: Concurrent assessment of calpain and caspase-3 activation after oxygen-glucose deprivation in primary septohippocampal cultures. J Cereb Blood Flow Metab. 2001, 21: 1281-94. 10.1097/00004647-200111000-00004.
Article
Google Scholar
Zhao X, Pike BR, Newcomb JK: Maitotoxin induces calpain but not caspase-3 activation and necrotic cell death in primary septo-hippocampal cultures. Neurochem Res. 1999, 24: 371-82. 10.1023/A:1020933616351.
Article
CAS
PubMed
Google Scholar
Yakovlev AG, Knoblach SM, Fal L: Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J Neurosci. 1997, 17: 7415-24.
CAS
PubMed
Google Scholar
Murahashi H, Azuma H, Zamzami N, Furuya KL, Ikebuchi K, Yamaguchi M, Yamada Y, Sato N, Fujihara M, Kroemer G, Ikeda H: Possible contribution of apoptosis-inducing factor (AIF) and reactive oxygen species (ROS) to UVB-induced caspase-independent cell death in the T cell line Jurkat. J Leukoc Biol. 2003, 73: 399-06. 10.1189/jlb.0702335.
Article
CAS
PubMed
Google Scholar
Loeffler M, Daugas E, Susin SA, Zamazami N, Metivier D, Nieminen AL, Brothers G, Penninger JM, Kroemer G: Dominant cell death induction by extramitochondrally targed apoptosis-inducing factor. FASEB J. 15: 758-67. 10.1096/fj.00-0388com.
Susin SA, Daugas E, Ravagnan L, Samejima K, Zamazami N, Loeffler M, Costantini P, Ferri KF: Two distinct pathway leading to nuclear. Apoptosis. J Exp Med. 2000, 192 (4): 571-79. 10.1084/jem.192.4.571.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wilcox JG, Hwang J, Hodis HN, Sevanian A, Stanczyk FZ, Lobo RA: Cardioprotective effects of individual conjugated equine estrogens through their possible modulation of insulin resistance and oxidation of low-density lipoprotein. Fertil Steril. 1997, 67: 57-62. 10.1016/S0015-0282(97)81856-0.
Article
CAS
PubMed
Google Scholar
Sribnick EA, Ray SK, Nowak MW, Li L, Banik NL: 17β-estradiol attenuates glutamate-induced apoptosis and preserves electrophysiologic function in primary cortical neurons. Journal of Neuroscience Research. 2004, 76: 688-96. 10.1002/jnr.20124.
Article
CAS
PubMed
Google Scholar
Singer CA, Rogers KL, Strickland TM, Dorsa DM: Estrogen protects primary cortical neurons from glutamate toxicity. Neurosci Lett. 1996, 212: 13-16. 10.1016/0304-3940(96)12760-9.
Article
CAS
PubMed
Google Scholar
Sur P, Scrinick EA, Wingrave JM, Nowak MW, Ray SK, Banik NL: Estrogen attenuates oxidative stress-induced apoptosis in C6 glial cells. Brain Res. 2003, 971: 178-88. 10.1016/S0006-8993(03)02349-7.
Article
CAS
PubMed
Google Scholar
Tiidus PM, Holden D, Bombardier E, Zajchowski S, Enns D, Belcastro A: Estrogen effect on post-exercise skeletal muscle neutrophil infiltration and calpain activity. Can J Physiol Pharmacol. 2001, 79: 400-06. 10.1139/cjpp-79-5-400.
Article
CAS
PubMed
Google Scholar
Murayama A, Fulai F, Murachi T: Action of calpain on the basic estrogen receptor molecule of porcine uterus. J Biochem. 1984, 95: 1697-04.
CAS
PubMed
Google Scholar
Zaulyanov LL, Green PS, Simpkins JW: Glutamate receptor requirement for neuronal death from anoxia-reoxygenation: an in vitro model for assessment of the neuroprotective effects of estrogens. Cell and Mol Neurobiol. 1999, 19: 705-18. 10.1023/A:1006948921855.
Article
CAS
Google Scholar
Kimet YJ, Hur EM, Park TJ, Kim KT: Nongenomic inhibition of catecholamine secretion by 17β-estradiol in PC12 cells. J Neurochem. 2000, 74: 2490-96. 10.1046/j.1471-4159.2000.0742490.x.
Google Scholar
Goodman Y, Bruce AJ, Cheng B, Mattson MP: Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injure, and amyloid β-peptide toxicity in hippocampal neurons. J Neurochem. 1996, 66: 1836-44.
Article
CAS
PubMed
Google Scholar
Brewer GJ, Reichensperger JD, Brinton RD: Prevention of age-related dysregulation of calcium dynamics by estrogen in neurons. Neurobiol Aging. 2005 Jun 13.
Bano D, Young KW, Guerin CJ, Lefeuvre R, Rothwell NJ, Naldini L, Rizzuto R, Carafoli E, Nicotera P: Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell. 2005, 120: 275-85. 10.1016/j.cell.2004.11.049.
Article
CAS
PubMed
Google Scholar
DiStasi AMM, Gallo V, Ceccarini M, Petrucci TC: Neuronal fodrin proleolysis occurs independently of excitatory amino acid-induced neurotoxicity. Neuron. 1991, 6: 445-454. 10.1016/0896-6273(91)90252-U.
Article
CAS
Google Scholar
Manev H, Favaron M, Siman A, Guidotti A, Costa E: Glutamate neurotoxicity is independent of calpain I inhibition in primary cultures of cerebellar granule cells. J Neuro Chem. 1991, 57: 1288-1295.
CAS
Google Scholar
Adamec E, Beermann ML, Nixon RA: Calpain I activation in rat hippocampal neurons in culture is NMDA receptor selective and not essential for excitotoxic cell death. Molecular Brain Research. 1998, 54: 35-48. 10.1016/S0169-328X(97)00304-5.
Article
CAS
PubMed
Google Scholar
Choi DW: Excitotoxic cell death. J Neurobiol. 1992, 23 (9): 1261-76. 10.1002/neu.480230915.
Article
CAS
PubMed
Google Scholar
Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT: Glutamate toxicity in a neuronal cell line involves inhibition of cysteine transport leading to oxidative stress. Neuron. 1989, 2 (6): 1547-58. 10.1016/0896-6273(89)90043-3.
Article
CAS
PubMed
Google Scholar
Li Y, Maher P, Schubert D: Phosphatidylcholine-specific phospholipase C regulates glutamate-induced nerve cell death. Proc Natl Acad Sci USA. 1998, 95 (13): 7748-53. 10.1073/pnas.95.13.7748.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bhavnani BR, Berco M, Binkley J: Equine estrogens differentially prevent cell death induced by glutamate. J Soc Gynecol Investig. 2003, 10: 302-8. 10.1016/S1071-5576(03)00087-X.
Article
CAS
PubMed
Google Scholar