Mota SI, Ferreira IL, Rego AC. Dysfunctional synapse in Alzheimer’s disease—a focus on NMDA receptors. Neuropharmacology. 2014;76(Pt A):16–26.
Article
CAS
PubMed
Google Scholar
Deardorff WJ, Grossberg GT. A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer’s disease. Drug Des Dev Ther. 2016;10:3267.
Article
CAS
Google Scholar
Tschanz J, Lyketsos C, Steinberg M, Norton M. Natural history of Alzheimer’s Disease: findings from the Cache County Dementia Progression Study. Am J Geriat Psychiat. 2008;16(3):A30–A30.
Google Scholar
Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81(2):741–66.
Article
CAS
PubMed
Google Scholar
Ai PH, Chen S, Liu XD, Zhu XN, Pan YB, Feng DF, Chen S, Xu NJ, Sun S. Paroxetine ameliorates prodromal emotional dysfunction and late-onset memory deficit in Alzheimer’s disease mice. Transl Neurodegen. 2020;9(1):18.
Article
CAS
Google Scholar
Iqbal K, Grundke-Iqbal I. Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention. J Cell Mol Med. 2008;12(1):38–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Selkoe DJ, Xia W, Podlisny M, Hartley D, Walsh D. Progressive cerebral accumulation of the amyloid beta-protein as the central pathogenetic event in Alzheimer’s disease. Amyloid Amyloidosis. 1998;1999:448–52.
Google Scholar
Agyare EK, Leonard SR, Curran GL, Yu CC, Lowe VJ, Paravastu AK, Poduslo JF, Kandimalla KK. Traffic jam at the blood-brain barrier promotes greater accumulation of Alzheimer’s disease amyloid-beta proteins in the cerebral vasculature. Mol Pharmaceut. 2013;10(5):1557–65.
Article
CAS
Google Scholar
Woo HN, Baik SH, Park JS, Gwon AR, Yang S, Yun YK, Jo DG. Secretases as therapeutic targets for Alzheimer’s disease. Biochem Biophys Res Commun. 2011;404(1):10–5.
Article
CAS
PubMed
Google Scholar
Li Y, Xu J, Liu Y, Zhu J, Liu N, Zeng W, Huang N, Rasch MJ, Jiang H, Gu X, et al. A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning. Nat Neurosci. 2017;20(4):559–70.
Article
CAS
PubMed
Google Scholar
Spacek J, Harris KM. Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci. 1997;17(1):190–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci. 2011;12(10):585–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang X, Yao C, Tian T, Li X, Yan H, Wu J, Li H, Pei L, Liu D, Tian Q, et al. A novel mechanism of memory loss in Alzheimer’s disease mice via the degeneration of entorhinal-CA1 synapses. Mol Psychiatry. 2018;23(2):199–210.
Article
CAS
PubMed
Google Scholar
Garcia-Jimenez A, Cowburn RF, Ohm TG, Lasn H, Winblad B, Bogdanovic N, Fastbom A. Loss of stimulatory effect of guanosine triphosphate on [S-35]GTP gamma S binding correlates with Alzheimer’s disease neurofibrillary pathology in entorhinal cortex and CA1 hippocampal subfield. J Neurosci Res. 2002;67(3):388–98.
Article
CAS
PubMed
Google Scholar
Witter MP, Groenewegen HJ. Lopes da Silva FH, Lohman AH: functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol. 1989;33(3):161–253.
Article
CAS
PubMed
Google Scholar
Steward O, Scoville SA. Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol. 1976;169(3):347–70.
Article
CAS
PubMed
Google Scholar
Brun VH, Leutgeb S, Wu HQ, Schwarcz R, Witter MP, Moser EI, Moser MB. Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex. Neuron. 2008;57(2):290–302.
Article
CAS
PubMed
Google Scholar
Brun VH, Otnass MK, Molden S, Steffenach HA, Witter MP, Moser MB, Moser EI. Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science. 2002;296(5576):2243–6.
Article
CAS
PubMed
Google Scholar
Ables AZ. Memantine (Namenda) for moderate to severe Alzheimer’s disease. Am Fam Physician. 2004;69(6):1491–2.
PubMed
Google Scholar
Parsons CG, Stoffler A, Danysz W. Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system–too little activation is bad, too much is even worse. Neuropharmacology. 2007;53(6):699–723.
Article
CAS
PubMed
Google Scholar
Fabre T, Bertrand-Barat J, Freyburger G, Rivel J, Dupuy B, Durandeau A, Baquey C. Quantification of the inflammatory response in exudates to three polymers implanted in vivo. J Biomed Mater Res. 1998;39(4):637–41.
Article
CAS
PubMed
Google Scholar
Al-Sonboli N, Hart CA, Al-Aeryani A, Banajeh SM, Al-Aghbari N, Dove W, Cuevas LE. Respiratory syncytial virus and human metapneumovirus in children with acute respiratory infections in Yemen. Pediatr Infect Dis J. 2005;24(8):734–6.
Article
PubMed
Google Scholar
Martinez-Coria H, Green KN, Billings LM, Kitazawa M, Albrecht M, Rammes G, Parsons CG, Gupta S, Banerjee P, LaFerla FM. Memantine improves cognition and reduces Alzheimer’s-like neuropathology in transgenic mice. Am J Pathol. 2010;176(2):870–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minkeviciene R, Banerjee P, Tanila H. Memantine improves spatial learning in a transgenic mouse model of Alzheimer’s disease. J Pharmacol Exp Ther. 2004;311(2):677–82.
Article
CAS
PubMed
Google Scholar
Van Dam D, Abramowski D, Staufenbiel M, De Deyn PP. Symptomatic effect of donepezil, rivastigmine, galantamine and memantine on cognitive deficits in the APP23 model. Psychopharmacology. 2005;180(1):177–90.
Article
CAS
PubMed
Google Scholar
Van Dam D, De Deyn PP. Cognitive evaluation of disease-modifying efficacy of galantamine and memantine in the APP23 model. Eur Neuropsychopharmacol. 2006;16(1):59–69.
Article
PubMed
CAS
Google Scholar
Wei H, Dobkin C, Sheikh AM, Malik M, Brown WT, Li X. The therapeutic effect of memantine through the stimulation of synapse formation and dendritic spine maturation in autism and fragile X syndrome. PloS one. 2012;7(5):e36981.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soudais C, Laplace-Builhe C, Kissa K, Kremer EJ. Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. FASEB J. 2001;15(12):2283–5.
Article
CAS
PubMed
Google Scholar
Salinas S, Bilsland LG, Henaff D, Weston AE, Keriel A, Schiavo G, Kremer EJ. CAR-associated vesicular transport of an adenovirus in motor neuron axons. PLoS Pathogens. 2009;5(5):e1000442.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol. 2002;64:355–405.
Article
CAS
PubMed
Google Scholar
Shu S, Zhu H, Tang N, Chen W, Li X, Li H, Pei L, Liu D, Mu Y, Tian Q, et al. Selective degeneration of Entorhinal-CA1 synapses in Alzheimer’s disease via activation of DAPK1. J Neurosci. 2016;36(42):10843–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L. Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA. 1999;96(6):3228–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yassa MA. Ground zero in Alzheimer’s disease. Nat Neurosci. 2014;17(2):146–7.
Article
CAS
PubMed
Google Scholar
Criscuolo C, Fontebasso V, Middei S, Stazi M, Ammassari-Teule M, Yan SS, Origlia N. Entorhinal Cortex dysfunction can be rescued by inhibition of microglial RAGE in an Alzheimer’s disease mouse model. Sci Rep. 2017;7:42370.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou X, Wang L, Xiao W, Su Z, Zheng C, Zhang Z, Wang Y, Xu B, Yang X, Hoi MPM. Memantine improves cognitive function and alters hippocampal and cortical proteome in triple transgenic mouse model of Alzheimer’s disease. Exp Neurobiol. 2019;28(3):390–403.
Article
PubMed
PubMed Central
Google Scholar
Wang QJ, Shen YE, Wang X, Fu S, Zhang X, Zhang YN, Wang RT. Concomitant memantine and Lactobacillus plantarum treatment attenuates cognitive impairments in APP/PS1 mice. Aging. 2020;12(1):628–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stazi M, Wirths O. Chronic memantine treatment ameliorates behavioral deficits, neuron loss, and impaired neurogenesis in a model of Alzheimer’s disease. Mol Neurobiol. 2021;58(1):204–16.
Article
PubMed
Google Scholar
Scholtzova H, Wadghiri YZ, Douadi M, Sigurdsson EM, Li YS, Quartermain D, Banerjee P, Wisniewski T. Memantine leads to behavioral improvement and amyloid reduction in Alzheimer’s-disease-model transgenic mice shown as by micromagnetic resonance imaging. J Neurosci Res. 2008;86(12):2784–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu MY, Wang S, Yao WF, Zhang ZJ, Zhong X, Sha L, He M, Zheng ZH, Wei MJ. Memantine improves spatial learning and memory impairments by regulating NGF signaling in APP/PS1 transgenic mice. Neuroscience. 2014;273:141–51.
Article
CAS
PubMed
Google Scholar
Dong H, Yuede CM, Coughlan C, Lewis B, Csernansky JG. Effects of memantine on neuronal structure and conditioned fear in the Tg2576 mouse model of Alzheimer’s disease. Neuropsychopharmacology. 2008;33(13):3226–36.
Article
CAS
PubMed
Google Scholar
Filali M, Lalonde R, Rivest S. Subchronic memantine administration on spatial learning, exploratory activity, and nest-building in an APP/PS1 mouse model of Alzheimer’s disease. Neuropharmacology. 2011;60(6):930–6.
Article
CAS
PubMed
Google Scholar
Takahashi-Ito K, Makino M, Okado K, Tomita T. Memantine inhibits beta-amyloid aggregation and disassembles preformed beta-amyloid aggregates. Biochem Biophys Res Commun. 2017;493(1):158–63.
Article
CAS
PubMed
Google Scholar
Bieschke J, Herbst M, Wiglenda T, Friedrich RP, Boeddrich A, Schiele F, Kleckers D, del Amo LJM, Gruning BA, Wang Q, et al. Small-molecule conversion of toxic oligomers to nontoxic beta-sheet-rich amyloid fibrils. Nat Chem Biol. 2011;8(1):93–101.
Article
PubMed
CAS
Google Scholar
Alberdi E, Sanchez-Gomez MV, Cavaliere F, Perez-Samartin A, Zugaza JL, Trullas R, Domercq M, Matute C. Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium. 2010;47(3):264–72.
Article
CAS
PubMed
Google Scholar
Chen M, Zhao Y, Yang H, Luan W, Song J, Cui D, Dong Y, Lai B, Ma L, Zheng P. Morphine disinhibits glutamatergic input to VTA dopamine neurons and promotes dopamine neuron excitation. eLife. 2015;4:e9275.
Google Scholar
Chen M, Shao D, Fu Y, Ma Q, Chen M, Cui D, Song J, Sheng H, Yang L, Dong Y, et al. Key determinants for morphine withdrawal conditioned context-induced increase in Arc expression in anterior cingulate cortex and withdrawal memory retrieval. Exp Neurol. 2019;311:234–46.
Article
CAS
PubMed
Google Scholar
Hwang KD, Bak MS, Kim SJ, Rhee S, Lee YS. Restoring synaptic plasticity and memory in mouse models of Alzheimer’s disease by PKR inhibition. Mol Brain. 2017;10(1):57.
Article
PubMed
PubMed Central
CAS
Google Scholar