Chiu KM, Wu CC, Wang MJ, Lee MY, Wang SJ. Protective effects of bupivacaine against kainic acid-induced seizure and neuronal cell death in the rat hippocampus. Biol Pharm Bull. 2015;38:522–30.
Article
CAS
PubMed
Google Scholar
Bernardino L, Ferreira R, Cristovao AJ, Sales F, Malva JO. Inflammation and neurogenesis in temporal lobe epilepsy. Curr Drug Targets CNS Neurol Disord. 2005;4:349–60.
Article
CAS
PubMed
Google Scholar
Vezzani A, Granata T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia. 2005;46:1724–43.
Article
CAS
PubMed
Google Scholar
Matin N, Tabatabaie O, Falsaperla R, Lubrano R, Pavone P, et al. Epilepsy and innate immune system: a possible immunogenic predisposition and related therapeutic implications. Hum Vaccin Immunother. 2015;11:2021–9.
Article
PubMed
Google Scholar
Xiao Z, Peng J, Yang L, Kong H, Yin F. Interleukin-1beta plays a role in the pathogenesis of mesial temporal lobe epilepsy through the PI3K/Akt/mTOR signaling pathway in hippocampal neurons. J Neuroimmunol. 2015;282:110–7.
Article
CAS
PubMed
Google Scholar
Diamond ML, Ritter AC, Failla MD, Boles JA, Conley YP, et al. IL-1beta associations with posttraumatic epilepsy development: a genetics and biomarker cohort study. Epilepsia. 2015;56:991–1001.
Article
CAS
PubMed
Google Scholar
Vezzani A, Balosso S, Ravizza T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun. 2008;22:797–803.
Article
CAS
PubMed
Google Scholar
Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19:312–8.
Article
CAS
PubMed
Google Scholar
Carpentier PA, Duncan DS, Miller SD. Glial toll-like receptor signaling in central nervous system infection and autoimmunity. Brain Behav Immun. 2008;22:140–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rivieccio MA, Suh HS, Zhao Y, Zhao ML, Chin KC, et al. TLR3 ligation activates an antiviral response in human fetal astrocytes: a role for viperin/cig5. J Immunol. 2006;177:4735–41.
Article
CAS
PubMed
Google Scholar
Suh HS, Zhao ML, Rivieccio M, Choi S, Connolly E, et al. Astrocyte indoleamine 2,3-dioxygenase is induced by the TLR3 ligand poly(I:C): mechanism of induction and role in antiviral response. J Virol. 2007;81:9838–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suh HS, Zhao ML, Choi N, Belbin TJ, Brosnan CF, et al. TLR3 and TLR4 are innate antiviral immune receptors in human microglia: role of IRF3 in modulating antiviral and inflammatory response in the CNS. Virology. 2009;392:246–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.
Article
CAS
PubMed
Google Scholar
Suh HS, Brosnan CF, Lee SC. Toll-like receptors in CNS viral infections. Curr Top Microbiol Immunol. 2009;336:63–81.
CAS
PubMed
Google Scholar
Okun E, Griffioen KJ, Lathia JD, Tang SC, Mattson MP, et al. Toll-like receptors in neurodegeneration. Brain Res Rev. 2009;59:278–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verstak B, Nagpal K, Bottomley SP, Golenbock DT, Hertzog PJ, et al. MyD88 adapter-like (Mal)/TIRAP interaction with TRAF6 is critical for TLR2- and TLR4-mediated NF-kappaB proinflammatory responses. J Biol Chem. 2009;284:24192–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ben-Ari Y, Cossart R. Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci. 2000;23:580–7.
Article
CAS
PubMed
Google Scholar
Choi DW. Excitotoxic cell death. J Neurobiol. 1992;23:1261–76.
Article
CAS
PubMed
Google Scholar
Clarke VR, Collingridge GL, Lauri SE, Taira T. Synaptic kainate receptors in CA1 interneurons gate the threshold of theta-frequency-induced long-term potentiation. J Neurosci. 2012;32:18215–26.
Article
CAS
PubMed
Google Scholar
Weiss S, Cataltepe O, Cole AJ. Anatomical studies of DNA fragmentation in rat brain after systemic kainate administration. Neuroscience. 1996;74:541–51.
Article
CAS
PubMed
Google Scholar
Faraco G, Pancani T, Formentini L, Mascagni P, Fossati G, et al. Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol Pharmacol. 2006;70:1876–84.
Article
CAS
PubMed
Google Scholar
Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, et al. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther. 2007;321:892–901.
Article
CAS
PubMed
Google Scholar
Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem. 2004;89:1358–67.
Article
CAS
PubMed
Google Scholar
Camelo S, Iglesias AH, Hwang D, Due B, Ryu H, et al. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol. 2005;164:10–21.
Article
CAS
PubMed
Google Scholar
Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci. 2003;23:9418–27.
CAS
PubMed
Google Scholar
Gardian G, Browne SE, Choi DK, Klivenyi P, Gregorio J, et al. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J Biol Chem. 2005;280:556–63.
Article
CAS
PubMed
Google Scholar
Butler KV, Kozikowski AP. Chemical origins of isoform selectivity in histone deacetylase inhibitors. Curr Pharm Des. 2008;14:505–28.
Article
CAS
PubMed
Google Scholar
Kozikowski AP, Chen Y, Gaysin A, Chen B, D’Annibale MA, et al. Functional differences in epigenetic modulators-superiority of mercaptoacetamide-based histone deacetylase inhibitors relative to hydroxamates in cortical neuron neuroprotection studies. J Med Chem. 2007;50:3054–61.
Article
CAS
PubMed
Google Scholar
O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7:353–64.
Article
PubMed
Google Scholar
Wang X, Stridh L, Li W, Dean J, Elmgren A, et al. Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner. J Immunol. 2009;183:7471–7.
Article
CAS
PubMed
Google Scholar
Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32:281–94.
Article
CAS
PubMed
Google Scholar
Chiu TL, Wang MJ, Su CC. The treatment of glioblastoma multiforme through activation of microglia and TRAIL induced by rAAV2-mediated IL-12 in a syngeneic rat model. J Biomed Sci. 2012;19:45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carlson H, Ronne-Engstrom E, Ungerstedt U, Hillered L. Seizure related elevations of extracellular amino acids in human focal epilepsy. Neurosci Lett. 1992;140:30–2.
Article
CAS
PubMed
Google Scholar
Chapman AG, Elwes RD, Millan MH, Polkey CE, Meldrum BS. Role of glutamate and aspartate in epileptogenesis; contribution of microdialysis studies in animal and man. Epilepsy Res Suppl. 1996;12:239–46.
CAS
PubMed
Google Scholar
Meldrum BS. The role of glutamate in epilepsy and other CNS disorders. Neurology. 1994;44:S14–23.
CAS
PubMed
Google Scholar
Friedman LK, Pellegrini-Giampietro DE, Sperber EF, Bennett MV, Moshe SL, et al. Kainate-induced status epilepticus alters glutamate and GABAA receptor gene expression in adult rat hippocampus: an in situ hybridization study. J Neurosci. 1994;14:2697–707.
CAS
PubMed
Google Scholar
Park HJ, Kim HJ, Park HJ, Ra J, Zheng LT, et al. Protective effect of topiramate on kainic acid-induced cell death in mice hippocampus. Epilepsia. 2008;49:163–7.
Article
CAS
PubMed
Google Scholar
Chittajallu R, Vignes M, Dev KK, Barnes JM, Collingridge GL, et al. Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature. 1996;379:78–81.
Article
CAS
PubMed
Google Scholar
Ferkany JW, Zaczek R, Coyle JT. Kainic acid stimulates excitatory amino acid neurotransmitter release at presynaptic receptors. Nature. 1982;298:757–9.
Article
CAS
PubMed
Google Scholar
Sperk G. Kainic acid seizures in the rat. Prog Neurobiol. 1994;42:1–32.
Article
CAS
PubMed
Google Scholar
Spigolon G, Veronesi C, Bonny C, Vercelli A. c-Jun N-terminal kinase signaling pathway in excitotoxic cell death following kainic acid-induced status epilepticus. Eur J Neurosci. 2010;31:1261–72.
Article
PubMed
Google Scholar
Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience. 1985;14:375–403.
Article
CAS
PubMed
Google Scholar
Wang FX, Liu SY, Zheng X, Chen X, Lu LX, et al. TLR1 expression in mouse brain was increased in a KA-induced seizure model. Inflamm Res. 2015;64:487–95.
Article
CAS
PubMed
Google Scholar
Nabeka H, Shimokawa T, Doihara T, Saito S, Wakisaka H, et al. A prosaposin-derived peptide alleviates kainic acid-induced brain injury. PLoS ONE. 2015;10:e0126856.
Article
PubMed
PubMed Central
Google Scholar
Avignone E, Ulmann L, Levavasseur F, Rassendren F, Audinat E. Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling. J Neurosci. 2008;28:9133–44.
Article
CAS
PubMed
Google Scholar
Kim DH, Yoon BH, Jung WY, Kim JM, Park SJ, et al. Sinapic acid attenuates kainic acid-induced hippocampal neuronal damage in mice. Neuropharmacology. 2010;59:20–30.
Article
CAS
PubMed
Google Scholar
Penkowa M, Florit S, Giralt M, Quintana A, Molinero A, et al. Metallothionein reduces central nervous system inflammation, neurodegeneration, and cell death following kainic acid-induced epileptic seizures. J Neurosci Res. 2005;79:522–34.
Article
CAS
PubMed
Google Scholar
Larochelle A, Bellavance MA, Rivest S. Role of adaptor protein MyD88 in TLR-mediated preconditioning and neuroprotection after acute excitotoxicity. Brain Behav Immun. 2015;46:221–31.
Article
CAS
PubMed
Google Scholar
Klegeris A, Choi HB, McLarnon JG, McGeer PL. Functional ryanodine receptors are expressed by human microglia and THP-1 cells: their possible involvement in modulation of neurotoxicity. J Neurosci Res. 2007;85:2207–15.
Article
CAS
PubMed
Google Scholar
Klegeris A, McGeer EG, McGeer PL. Therapeutic approaches to inflammation in neurodegenerative disease. Curr Opin Neurol. 2007;20:351–7.
Article
CAS
PubMed
Google Scholar
Wang D, Shi J, Lv S, Xu W, Li J, et al. Artesunate attenuates lipopolysaccharide-stimulated proinflammatory responses by suppressing TLR4, MyD88 expression, and NF-kappaB activation in microglial cells. Inflammation. 2015;38:1925–32.
Article
CAS
PubMed
Google Scholar
Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, et al. The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci. 2002;22:2478–86.
CAS
PubMed
Google Scholar
Olson JK, Miller SD. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol. 2004;173:3916–24.
Article
CAS
PubMed
Google Scholar
Yao L, Kan EM, Lu J, Hao A, Dheen ST, et al. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia. J Neuroinflammation. 2013;10:23.
Article
PubMed
PubMed Central
Google Scholar
Zhang G, Ghosh S. Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. J Clin Invest. 2001;107:13–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.
Article
CAS
PubMed
Google Scholar
Soliman ML, Smith MD, Houdek HM, Rosenberger TA. Acetate supplementation modulates brain histone acetylation and decreases interleukin-1beta expression in a rat model of neuroinflammation. J Neuroinflammation. 2012;9:51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang B, West EJ, Van KC, Gurkoff GG, Zhou J, et al. HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res. 2008;1226:181–91.
Article
CAS
PubMed
PubMed Central
Google Scholar