Huntingford FA, Turner AK: Animal Conflict. 1987, New York: Chapman and Hall
Google Scholar
Potter LB, Mercy JA: Public health perspective on interpersonal violence among youths in the United States. Handbook of Antisocial Behavior. Edited by: Stoff DM, J B, Maser JD. 1997, New York: Wiley, 3-11.
Google Scholar
Cloninger CR, Bayon C, Przybeck TR: Epidemiology and Axis I comorbidity of antisocial personality. Handbook of Antisocial Behavior. Edited by: Stoff DM, Breiling J, Maser JD. 1997, New York: Wiley
Google Scholar
Connor DF: Aggression and Antisocial Behavior in Children and Adolescents: Research and Treatment. 2002, New York: The Guilford Press
Google Scholar
Nagin D, Tremblay RE: Trajectories of boy's physical aggression, opposition, and hyperactivity on the path to physically violent and nonviolent juvenile delinquency. Child Dev. 1999, 70: 1181-1196.
CAS
PubMed
Google Scholar
Tremblay RE, Nagin DS, Sequin JR, Zoccolillo M, Zelazo PD, Boivin M, Perusse D, Japel C: Physical aggression during early childhood: trajectories and predictors. Can Child Adolesc Psychiatr Rev. 2005, 14 (1): 3-9.
PubMed Central
PubMed
Google Scholar
Dodge KA: The structure and function of reactive and proactive aggression. The Development and Treatment of Childhood Aggression. Edited by: Peplerr DJ, Rubin KH. 1991, Hillside, NJ: Lawrence Erlbaum Associates, Inc, 201-218.
Google Scholar
Kazdin AE, Bass D, Siegel T, Thomas C: Cognitive-behavioral therapy and relationship therapy in the treatment of children referred for antisocial behavior. J Consult Clin Psychol. 1989, 57 (4): 522-535.
CAS
PubMed
Google Scholar
Malone RP, Luebbert JF, Delaney MA, Biesecker KA, Blaney BL, Rowan AB, Campbell M: Nonpharmacological response in hospitalized children with conduct disorder. J Am Acad Child Adolesc Psychiatry. 1997, 36: 242-247.
CAS
PubMed
Google Scholar
Steiner H, Saxene K, Chang K: Psychopharmacological strategies for the treatment of aggression in youth. CNS Spectrums. 2003, 8: 298-308.
PubMed
Google Scholar
Olivier B, Mos J: Serenics, serotonin and aggression. Prog Clin Biol Res. 1990, 361: 203-230.
CAS
PubMed
Google Scholar
Olivier B, Mos J, Hartog J, Rasmussen DL: Serenics: a new class of drugs for putative selective treatment of pathological destructive behavior. Drug News Perspective. 1990, 3: 261-271.
Google Scholar
Stanislav SW, Fabre T, Crismon ML, Childs A: Buspirone's efficacy in organic-induced aggression. J Clin Psychopharmacol. 1994, 14 (2): 126-130.
CAS
PubMed
Google Scholar
Coccaro EF, Kavoussi RJ: Fluoxetine and impulsive aggressive behavior in personality-disordered subjects. Arch Gen Psychiatry. 1997, 54 (12): 1081-1088.
CAS
PubMed
Google Scholar
Pfeffer CR, Jiang H, Domeshek LJ: Buspirone treatment of psychiatrically hospitalized prepubertal children with symptoms of anxiety and moderately severe aggression. J Child Adolesc Psychopharmacol. 1997, 7 (3): 145-155.
CAS
PubMed
Google Scholar
Ratey J, Sovner R, Parks A, Rogentine K: Buspirone treatment of aggression and anxiety in mentally retarded patients: a multiple-baseline, placebo lead-in study. J Clin Psychiatry. 1991, 52 (4): 159-162.
CAS
PubMed
Google Scholar
Ricketts RW, Goza AB, Ellis CR, Singh YN, Chambers S, Singh NN, Cooke JC: Clinical effects of buspirone on intractable self-injury in adults with mental retardation. J Am Acad Child Adolesc Psychiatry. 1994, 33 (2): 270-276.
CAS
PubMed
Google Scholar
Ferris CF: Vasopressin/oxytocin and aggression. Novartis Found Symp. Edited by: Bock G, Goode J. 2005, Chichester, UK: Wiley, 268: 190-198.
Google Scholar
Guillon CD, Koppel GA, Brownstein MJ, Chaney MO, Ferris CF, Lu S-F, Fabio KM, Miller MJ, Heindel ND, Hunden DC, et al: Azetidinones as vasopressin V1a antagonists. Bioorg Med Chem. 2007, 15 (5): 2054-2080.
PubMed Central
CAS
PubMed
Google Scholar
Ferris CF, Lu S-F, Messenger T, Guillon CD, Koppel GA, Miller MJ, Heindel ND, Simon NG: Orally active vasopressin V1a receptor antagonist, SRX251, selectively blocks aggressive behavior. Pharmacol Biochem Behav. 2006, 83 (2): 169-174.
CAS
PubMed
Google Scholar
Delgado JMR: Neural constellations in aggressive behavior. Aggression and Violence: A Psychobiological and Clinical Approach. Edited by: Valzelli I, Morgese I. 1980, Milan: Edizione Saaint Vincent, 82-97.
Google Scholar
Ferris CF: Neuroplasticity and aggression: an interaction between vasopressin and serotonin. Biology of Aggression. Edited by: Nelson RJ. 2006, New York: Oxford University Press, 163-175.
Google Scholar
Moyer KE: Kinds of aggression and their physiological basis. Comm Behav Biol. 1968, 2: 65-87.
Google Scholar
Adams DB: Brain mechanisms for offensive, defense and submission. Behav Brain Sci. 1979, 2: 201-241.
Google Scholar
Albert DJ, Walsh ML: Neural systems and the inhibitory modulation of agonistic behavior: a comparison of mammalian species. Neurosci Biobehav Rev. 1984, 8 (1): 5-24.
CAS
PubMed
Google Scholar
Ricci LA, Grimes JM, Melloni RH: Lasting changes in neuronal activation patterns in select forebrain regions of aggressive, adolescent anabolic/androgenic steroid-treated hamsters. Behav Brain Res. 2006, 176: 344-352.
PubMed Central
PubMed
Google Scholar
Hasen SN, Gammie SC: Differential fos activation in virgin and lactating mice in response to an intruder. Physiol Behav. 2005, 84: 681-695.
CAS
PubMed
Google Scholar
Potegal M, Ferris CF, Hebert M, Meyerhoff J, Skaredoff L: Attack priming in female Syrian golden hamsters is associated with a c-fos coupled process within the corticomedial amygdala. Neuroscience. 1996, 75: 869-880.
CAS
PubMed
Google Scholar
Delville Y, De Vries GJ, Ferris CF: Neural connections of the anterior hypothalamus and agonistic behavior in golden hamsters. Brain Behav Evol. 2000, 55: 53-76.
CAS
PubMed
Google Scholar
Haller J, Toth M, Halasz J, De Boer SF: Patterns of violent aggression-induced brain c-fos expression in male mice selected for aggressiveness. Physiol Behav. 2006, 88: 173-182.
CAS
PubMed
Google Scholar
Halasz J, Toth M, Kallo I, Liposits Z, Haller J: The activation of prefrontal cortical neurons in aggression – A double labeling study. Behav Brain Res. 2006, 175: 166-175.
PubMed
Google Scholar
Knyshevski I, Connor DF, Harrison RJ, Ricci LA, Melloni RHJ: Persistent activation of select forebrain regions in aggressive, adolescent cocaine-treated hamsters. Behav Brain Res. 2005, 159: 277-286.
CAS
PubMed
Google Scholar
Blanchard RJ, Blanchard DC: Aggressive behavior in the rat. Physiol Behav. 1977, 1: 197-224.
Google Scholar
Ferris CF, Febo M, Luo F, Schmidt K, Brevard ME, Kulkarni P, Messenger TL, Harder JA, King JA: Functional magnetic resonance imaging in conscious animals: A new tool in behavioral neuroscience research. Journal of Neuroendocrinology. 2006, 18: 307-318.
PubMed Central
CAS
PubMed
Google Scholar
Ogawa S, Lee TM, Nayak AS, Glynn P: Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990, 14 (1): 68-78.
CAS
PubMed
Google Scholar
Sokolloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M: The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977, 28: 897-916.
Google Scholar
Fox PT, Raichle ME: Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA. 1986, 83 (4): 1140-1144.
PubMed Central
CAS
PubMed
Google Scholar
Ramsey NF, Kirkby BS, Van Gelderen P, Berman KF, Duyn JH, Frank JA, Mattay VS, Van Horn JD, Esposito G, Moonen CT, et al: Functional mapping of human sensorimotor cortex with 3D BOLD fMRI correlates highly with H2(15)O PET rCBF. J Cereb Blood Flow Metab. 1996, 16 (5): 755-764.
CAS
PubMed
Google Scholar
Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR: Functional mapping of the human visual cortex by magnetic resonance imaging. Science. 1990, 254 (5032): 716-719.
Google Scholar
Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A: Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001, 412: 150-157.
CAS
PubMed
Google Scholar
Smith AJ, Blumenfeld H, Behar KL, Rothman DL, Shulman RG, F H: Cerebral energetics and spiking frequency: The neurophysiological basis of fMRI. Proc Natl Acad Sci USA. 2002, 99: 10765-10770.
PubMed Central
CAS
PubMed
Google Scholar
Karli P, Vergnes M, Didiergeorges F: Rat-mouse interspecific aggressive behavior and its manipulation by brain ablation and by brain stimulation. Biology of Aggressive Behavior. Edited by: Sigg E, Garattini S. 1969, Amsterdam: Excerpta Medica Foundation, 47-55.
Google Scholar
Hess WR, Brugger M: Das subkortikale Zentrum der affektiven Abwehrreacktion. Helvetica physiologica et pharacologica Acta. 1943, 1: 33-52.
Google Scholar
Roberts W, Steinberg M, Means L: Hypothalamic mechanisms for sexual, aggressive, and other motivational behaviors in the opossum, Didelphis Virginiana. J Comp Physiol Psychol. 1967, 64: 1-15.
CAS
PubMed
Google Scholar
Robinson B, Alexander M, Bowne G: Dominance reversal resulting from aggressive response evoked by brain telestimulation. Physiol Behav. 1969, 4: 749-752.
Google Scholar
Wasman M, Flynn JP: Directed attack elicited from the hypothalamus. Arch Neurol. 1962, 6: 220-227.
CAS
PubMed
Google Scholar
Adams DB: Defense and territorial behaviour dissociated by hypothalamic lesions in the rat. Nature. 1971, 232: 573-574.
CAS
PubMed
Google Scholar
Panksepp J: Effects of hypothalamic lesions on mouse-killing and shock-induced fighting in rats. Physiol Behav. 1971, 6: 311-316.
CAS
PubMed
Google Scholar
Roeling T, Veening J, Kruk M, Peters J, Vermelis M, Nieuwenhuys R: Efferent connections of the hypothalamic "aggressive area" in the rat. Neuroscience. 1994, 59: 1001-1024.
CAS
PubMed
Google Scholar
Nieuwenhuys R, Geeraedts LM, Veening JG: The medial forebrain bundle of the rat. I. General introduction. J Comp Neurol. 1982, 206: 49-81.
CAS
PubMed
Google Scholar
Goto M, Canteras NS, Burns G, Swanson LW: Projection from the subfornical region of the lateral hypothalmaic area. J Comp Neurol. 2005, 493: 412-438.
PubMed Central
PubMed
Google Scholar
Berk ML, Finkelstein JA: Efferent connections of the lateral hypothalamic area of the rat: an autoradiographic investigation. Brain Res Bull. 1982, 8: 511-526.
CAS
PubMed
Google Scholar
Antonucci AS, Gansler DA, Tan S, Bhadelia R, Patz S, Fulwiler C: Orbitofrontal correlates of aggression and impulsivity in psychiatric patients. Psychiatry Res. 2006, 147: 213-220.
PubMed
Google Scholar
Lotze M, Veit R, Anders S, Birbaumer N: Evidence for a different role of the ventral and dorsal medial prefrontal cortex for social reactive aggression: An interactive fMRI study. NeuroImage. 2007, 34: 470-478.
CAS
PubMed
Google Scholar
Nomura M, Nomura Y: Psychological, neuroimaging, and biochemical studies on functional association between impulsive behavior and the 5-HT2A receptor gene polymorphism in humans. Ann N Y Acad Sci. 2006, 1086: 134-143.
CAS
PubMed
Google Scholar
Keay KA, Bandler R: Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci Biobehav Rev. 2001, 25: 669-678.
CAS
PubMed
Google Scholar
Machado CJ, Bachevalier J: The impact of selective amygdala, orbital frontal cortex, or hippocampal formation lesions on established social relationships in rhesus monkeys (Macaca mulatta). Behav Neurosci. 2006, 120 (4): 761-786.
PubMed
Google Scholar
Raine A: Annotation: the role of prefrontal deficits, low autonomic arousal, and early health factors in the development of antisocial and aggressive behavior in children. J Child Psychol Psychiatry. 2002, 43: 417-434.
PubMed
Google Scholar
Blanchard RJ, Fukunaga K, Blanchard DC, Kelley MJ: Conspecific aggression in the laboratory rat. J Comp Physiol Psychol. 1975, 89: 1204-1209.
CAS
PubMed
Google Scholar
Vanderwolf CH: Behavior of the rat after removal of the neocortex and hippocampal formation. J Comp Physiol Psychol. 1978, 92: 156-175.
CAS
PubMed
Google Scholar
Mitchell AS, Dalrymple-Alford JC, Christie MA: Spatial working memory and the brainstem cholinergic innervation to the anterior thalamus. J Neurosci. 2002, 22: 1922-1928.
CAS
PubMed
Google Scholar
Wolff M, Gibb SJ, Dalrymple-Alford JC: Beyond spatial memory: the anterior thalamus and memory for the temporal order of a sequence of odor cues. J Neurosci. 2006, 26: 2907-2913.
CAS
PubMed
Google Scholar
Jenkins TA, Dias R, Amin E, Aggleton JP: Changes in Fos expression in the rat brain after unilateral lesions of the anterior thalamic nuclei. Eur J Neurosci. 2002, 16: 1425-1432.
PubMed
Google Scholar
Hamani C, Ewerton FI, Boniha SM, Ballester G, Mello LE, Lozano AM: Bilateral anterior thalamic nucleus lesions and high-frequency stimulation are protective against pilocarpine-induced seizures and status epilepticus. Neurosurgery. 2004, 54: 191-195.
PubMed
Google Scholar
Miller JW, McKeon C, Ferrendelli JA: Functional anatomy of pentylenetetrazol and electroshock seizures in the rat brainstem. Annals of Neurology. 1987, 22: 615-621.
CAS
PubMed
Google Scholar
Mirski MA, Rossell LA, Terry JB, Fisher RS: Anticonvulsant effect of anterior thalamic high frequency electrical stimulation in the rat. Epilepsy Res. 1997, 28: 89-100.
CAS
PubMed
Google Scholar
Brevard M, Kulkarni P, King JA, Ferris CF: Imaging the neural substrates involved in the genesis of generalized clonic seizures. Epilepsia. 2006, 47 (4): 745-754.
PubMed
Google Scholar
Mirski MA, Tsai YC, Rossell LA, Thakor NV, Sherman DL: Anterior thalamic mediation of experimental seizures: selective EEG spectral coherence. Epilepsia. 2003, 44: 355-365.
PubMed
Google Scholar
Hodaie M, Wennberg RA, Dostrovsky JO, Lozano AM: Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia. 2002, 43: 603-608.
PubMed
Google Scholar
Kerrigan JF, Litt B, Fisher RS, Cranstoun S, French JA, Blum DE, Dichterr M, Shetter A, Baltuch G, Jaqqi J, et al: Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy. Epilepsia. 2004, 45: 346-354.
PubMed
Google Scholar
Cannon WB: The James-Lang theory of emotion: A critical examination and an alternative theory. Am J Psychol. 1927, 39: 106-124.
Google Scholar
Papez JW: A proposed mechanism of emotion. Arch Neurol Psychiatry. 1937, 38: 725-743.
Google Scholar
Sikes RW, Chronister RB, White LE: Origin of the direct hippocampus-anterior thalamic bundle in the rat: A combined horseradish peroxidase-Golgi analysis. Exp Neurol. 1977, 57: 379-395.
CAS
PubMed
Google Scholar
Swanson LW, Cowan WM: An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol. 1977, 172 (1): 49-84.
CAS
PubMed
Google Scholar
Shibata H: Topographic organization of subcortical projections to the anterior thalamic nuclei in the rat. J Comp Neurol. 1992, 323: 117-127.
CAS
PubMed
Google Scholar
Seki M, Zyo K: Anterior thalamic afferents from the mamillary body and the limbic cortex in the rat. J Comp Neurol. 1984, 229: 242-256.
CAS
PubMed
Google Scholar
Thompson SM, Robertson RT: Organization of subcortical pathways for sensory projections to the limbic cortex I. Subcortical projections to the medial limbic cortex in the rat. J Comp Neurol. 1987, 265: 175-188.
CAS
PubMed
Google Scholar
Domesick VB: Thalamic relationship of the medial cortex in the rat. Brain Behav Evol. 1972, 6: 457-483.
CAS
PubMed
Google Scholar
Shibata H: Efferent projections from the anterior thalamic nuclei to the cingulate cortex in the rat. J Comp Neurol. 1993, 330: 533-542.
CAS
PubMed
Google Scholar
Sripanidkulchai K, Wyss JM: Thalamic projections to retrosplenial cortex in the rat. J Comp Neurol. 1986, 254: 143-165.
CAS
PubMed
Google Scholar
Ferris CF, Potegal M: Vasopressin receptor blockade in the anterior hypothalamus suppresses aggression in hamsters. Physiol Behav. 1988, 44 (2): 235-239.
CAS
PubMed
Google Scholar
Potegal M, Ferris CF: Intraspecific aggression in male hamsters is inhibited by intrahypothalamic vasopressin-receptor antagonist. Agg Behav. 1990, 15: 311-320.
Google Scholar
Young L, Winslow J, Nilsen R, Insel T: Species differences in V1a receptor gene expression in monogamous and nonmonogamous voles: behavioral consequenses. Behav Neurosci. 1997, 111: 599-605.
CAS
PubMed
Google Scholar
Caldwell HK, Albers HE: Effect of photoperiod on vasopressin-induced aggression in Syrian hamsters. Horm Behav. 2004, 46: 444-449.
CAS
PubMed
Google Scholar
Harrison RJ, Connor DF, Nowak C, Nash K, Melloni RH: Chronic anabolic-androgenic steriod treatment during adolescence increases anterior hypothalamic vasopressin and aggression in intact hamsters. Psychoneuroendocrinology. 2000, 25 (4): 317-338.
CAS
PubMed
Google Scholar
Haller J, Makara GB, Barna I, Kovacs K, Nagy J, Vecsernyes M: Compression of the pituitary stalk elicits chroninc increases in CSF vasopressin, oxytocin as well as in social investigation and aggressiveness. J Neuroendocrinol. 1996, 8: 361-365.
CAS
PubMed
Google Scholar
Coccaro EF, Kavoussi RJ, Hauger RL, Cooper TB, Ferris CF: Cerebrospinal fluid vasopressin levels: correlates with aggression and serotonin function in personality-disordered subjects. Arch Gen Psychiatry. 1998, 55 (8): 708-714.
CAS
PubMed
Google Scholar
Thompson RR, George K, Walton JC, Orr SP, Benson J: Sex-specific influences of vasopressin on human social communication. Proc Natl Acad Sci USA. 2006, 103: 7889-7894.
PubMed Central
CAS
PubMed
Google Scholar
Thompson R, Gupta S, Miller K, Mills S, Orr S: The effects of vasopressin on human facial responses related to social communication. Psychoneuroendocrinology. 2004, 29: 35-48.
CAS
PubMed
Google Scholar
Delville Y, Melloni RH, Ferris CF: Behavioral and neurobiological consequences of social subjugation during puberty in golden hamsters. J Neurosci. 1998, 18 (7): 2667-2672.
CAS
PubMed
Google Scholar
Veenema AH, Blume A, Niederle D, Buwalda B, Neumann ID: Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. Eur J Neurosci. 2006, 24: 1711-17204.
PubMed
Google Scholar
DeLeon KR, Grimes JM, Melloni RH: Repeated anabolic-androgenic steroid treatment during adolescence increases vasopressin V(1A) receptor binding in Syrian hamsters: correlation with offensive aggression. Horm Behav. 2002, 42: 182-191.
CAS
PubMed
Google Scholar
Jackson D, Burns R, Trksak G, Simeone B, Deleon KR, Connor DF, Harrison RJ, Melloni RH: Anterior hypothalamic vasopressin modulates the aggression-stimulating effects of adolescent cocaine exposure in Syrian hamsters. Neuroscience. 2005, 133: 635-646.
CAS
PubMed
Google Scholar
Ferris CF, Axelson JF, Martin AM, Roberge LF: Vasopressin immunoreactivity in the anterior hypothalamus is altered during the establishment of dominant/subordinate relationships between hamsters. Neuroscience. 1989, 29 (3): 675-683.
CAS
PubMed
Google Scholar
Cooper MA, Karom M, Huhman KL, Albers HE: Repeated agonistic encounters in hamsters modulate AVP V1a receptor binding. Horm Behav. 2005, 48: 545-551.
CAS
PubMed
Google Scholar
Bester-Meredith J, Young L, Marker C: Species differences in paternal behavior and aggression in peromyscus and their associations with vasopressin immunoreactivity and receptors. Horm Behav. 1999, 36: 25-38.
CAS
PubMed
Google Scholar
Bester-Meredith JK, Marker CA: Vasopressin and aggression in cross-fostered California mice (Peromyscus californicus) and white-footed mice (Peromyscus leucopus). Horm Behav. 2001, 40: 51-64.
CAS
PubMed
Google Scholar
Hull EM: Dopaminergic influences on male rat sexual behavior. Neurobiological effects of sex steriod hormones. Edited by: Micevych P, Hammer R. 1995, Cambridge (UK): Cambridge University Press, 234-253.
Google Scholar
Ferris CF, Delville Y, Grzonka Z, Luber-Narod J, Insel TR: An iodinated vasopressin (V1) antagonist blocks flank marking and selectively labels neural binding sites in golden hamsters. Physiol Behav. 1993, 54 (4): 737-747.
CAS
PubMed
Google Scholar
Barbeis C, Balestre MN, Jard S, Tribollet E, Arsenijevic Y, Dreifuss JJ, Bankowski K, Manning M, Chan WY, Schlosser SS, et al: Characterization of a novel, linear radioiodinated vasopressin antagonist: an excellent radioligand for vasopressin V1a receptors. Neuroendocrinology. 1995, 62 (2): 135-146.
CAS
PubMed
Google Scholar
Tribollet E, Barberis C, Jard S, Dubois-Dauphin M, Dreifuss JJ: Localization and pharmacological characterization of high affinity binding sites for vasopressin and oxytocin in the rat brain by light microscopic autoradiography. Brain Res. 1988, 442: 105-118.
CAS
PubMed
Google Scholar
Insel TR, Wang Z, Ferris CF: Patterns of brain vasopressin receptor distribution associated with social organization in microtine rodents. J Neurosci. 1994, 14: 5381-5392.
CAS
PubMed
Google Scholar
Young LJ, Toloczko D, Insel TR: Localization of vasopressin (V1a) receptor binding and mRNA in rhesus monkey brain. J Neuroendocrinol. 1999, 11: 291-297.
CAS
PubMed
Google Scholar
Mann JJ, Brent DA, Arango V: The neurobiology and genetics of suicide and attempted suicide: A focus on the serotonergic system. Neuropsychopharmacology. 2001, 24 (5): 467-477.
CAS
PubMed
Google Scholar
Manuck SB, Kaplan JR, Lotrich FE: Brain serotonin and aggressive disposition in humans and nonhuman primates. Biology of Aggression. Edited by: Nelson RJ. 2006, New York: Oxford University Press, 65-113.
Google Scholar
Zubieta JA, Alessi NE: Acute and chronic administration of trazodone in the treatment of disruptive behavior disorders in children. J Clin Psychopharmacol. 1992, 12: 346-351.
CAS
PubMed
Google Scholar
Coccaro EF, Astill JL, Herbert JL, Schut AG: Fluoxetine treatment of impulsive aggression in DSM-III-R personality disorder patients. Journal of Clinical Psychopharmacology. 1990, 10: 373-375.
CAS
PubMed
Google Scholar
Cherek DR, Lane SD: Acute effects of D-fenfluramine on simultaneous measures of aggressive escape and impulsive responses of adult males with and without a history of conduct disorder. Psychopharmacology (Berl). 2001, 157 (3): 221-227.
CAS
Google Scholar
Cherek D, Lane S, Pietras C, Steinberg J: Effects of chronic paroxetineadministration on measures of aggressive and impulsive responses of adult males with a history of conduct disorder. Psychopharmacology (Berl). 2002, 159 (3): 266-274.
CAS
Google Scholar
Barnes NM, Sharp T: A review of central 5-HT receptors and their function. Neuropharmacol. 1999, 38: 1083-1152.
CAS
Google Scholar
Le Poul E, Laaris N, Doucet E, Laporte A, Hamon M, Lanfumey L: Early desensitization of somato-dendritic 5-HT1A autoreceptors in rats treated with fluoxetine and paroxetine. Naunyn Schmiedebergs Arch Pharmacol. 1995, 352: 141-148.
CAS
PubMed
Google Scholar
Elena Castro M, Diaz A, del Olmo E, Pazos A: Chronic fluoxetine induces opposite changes in G protein coupling at pre and postsynaptic 5-HT1A receptors in rat brain. Neuropharmacology. 2003, 44 (1): 93-101.
CAS
PubMed
Google Scholar
Pejchal T, Foley MA, Kosofsky BE, Waeber C: Chronic fluoxetine treatment selectively uncouples raphe 5-HT(1A) receptors as measured by [(35)S]-GTP gamma S autoradiography. Br J Pharmacol. 2002, 135: 1115-1122.
PubMed Central
CAS
PubMed
Google Scholar
Blier P, de Montigny C: Current advances in the treatment of depression. Trends Pharmacol Sci. 1994, 15: 220-226.
CAS
PubMed
Google Scholar
Jacobs BL, Azmitia EC: Structure and function of the brain serotonin system. Physiol Rev. 1992, 72: 165-229.
CAS
PubMed
Google Scholar
Ferris CF: Serotonin inhibits vasopressin facilitated aggression in the Syrian hamster. Understanding aggressive behavior in children. Edited by: Ferris C, Grisso T. 1996, New York: New York Academy of Sciences, 794: 98-103.
Google Scholar
Lorrain DS, Riolo JV, Matuszewich L, Hull EM: Lateral hypothalamic serotonin inhibits nucleus accumbens dopamine: implications for sexual satiety. J Neurosci. 1999, 19: 7648-7652.
CAS
PubMed
Google Scholar
Rosen RC, Lane SDRM, Menza M: Effects of SSRIs on sexual function: a critical review. J Clin Psychopharmacol. 1999, 19: 67-85.
CAS
PubMed
Google Scholar
Damsa C, Bumb A, Bianchi-Demicheli F, Vidailhet P, Sterck R, Andreoli A, Beyenburg S: "Dopamine-dependent" side effects of selective serotonin reuptake inhibitors: a clinical review. J Clin Psychiatry. 2004, 65: 1064-1068.
CAS
PubMed
Google Scholar
Landgraf R, Gerstberger R, Montkowski A, Probst JC, Wotjak CT, Holsboer Fea: V1 vasopressin receptor antisense oligodeoxynucleotide into septum reduces vasopressin binding, social discrimination abilities, and anxiety-related behavior in rats. J Neurosci. 1995, 15: 4250-4258.
CAS
PubMed
Google Scholar
Liebsch G, Wotjak CT, Landgraf R, Engelmann M: Septal vasopressin modulates anxiety-related behaviour in rats. Neurosci Lett 217: 101–104. Neurosci Lett. 1996, 217: 101-104.
CAS
PubMed
Google Scholar
Wigger A, Sanchez MM, Mathys KC, Ebner K, Frank E, Liu D, Kresse A, Neumann ID, Holsboer F, Plotsky PM, et al: Alterations in central neuropeptide expression, release, and receptor binding in rats bred for high anxiety: critical role of vasopressin. Neuropsychopharmacology. 2004, 29 (1): 1-14.
CAS
PubMed
Google Scholar
Ferris CF, Rasmussen MF, Messenger TL, Koppel GA: Vasopressin-dependent flank marking in golden hamsters is suppressed by drugs used in the treatment of obsessive-compulsive disorder. BMC Neuroscience. 2001, 2: 10.
PubMed Central
CAS
PubMed
Google Scholar
Hirano K, Kimura R, Sugimoto Y, Yamada J, Uchida S, Kato Y, Hashimoto H, Yamada S: Relationship between brain serotonin transporter binding, plasma concentration and behavioural effect of selective serotonin reuptake inhibitors. Br J Pharmacol. 2005, 144: 695-702.
PubMed Central
CAS
PubMed
Google Scholar
Leveleki C, Sziray N, Levay G, Barsvari B, Soproni K, Mikics E, Haller J: Pharmacological evaluation of the stress-induced social avoidance model of anxiety. Brain Res Bull. 2006, 69: 153-160.
CAS
PubMed
Google Scholar
Gsell W, Burke M, Wiedermann D, Bonvento G, Silva AC, Dauphin F, Buhrle C, Hoehn M, Schwindt W: Differential effects of NMDA and AMPA glutamate receptors on functional magnetic resonance imaging signal and evoked neuronal activity during forepaw stimulation of the rat. J Neurosci. 2006, 26: 8409-8416.
PubMed
Google Scholar
Lehman MN, Adams DR: A statistical and motivational analysis of the social behaviours of the male laboratory rat. Behaviour. 1977, 61: 238-275.
Google Scholar
Albert DJ, Walsh ML, Gorzalka BB, Siemiens Y, Louie H: Testosterone removal in rats results in decrease in social aggression and a loss of social dominance. Physiol Behav. 1986, 36: 401-407.
CAS
PubMed
Google Scholar
Blanchard DC, Takahashi SN: No change in intermale aggression after amygdala lesions which reduce freezing. Physiol Behav. 1988, 42: 613-616.
CAS
PubMed
Google Scholar
Albert DJ, Walsh ML: Medial hypothalamic lesions in the rat enhance reactivity and mouse killing but not social aggression. Physiol Behav. 1982, 28: 791-795.
CAS
PubMed
Google Scholar
Zhang Z, Andersen AH, Avison MJ, Gerhardt GA, Gash DM: Functional MRI of apomorphine activation of the basal ganglia in awake rhesus monkeys. Brain Res. 2000, 852 (2): 290-296.
CAS
PubMed
Google Scholar
King JA, Garelick TS, Brevard ME, Chen W, Messenger TL, Duong TQ, Ferris CF: Procedure for minimizing stress for fMRI studies in conscious rats. J Neurosci Methods. 2005, 148 (2): 154-160.
PubMed Central
PubMed
Google Scholar
Ferris CF, Snowdon CT, King JA, Sullivan JM, Ziegler TE, Olson DP, Schultz-Darken NJ, Tannenbaum PL, Ludwig R, Wu Z, et al: Activation of neural pathways associated with sexual arousal in non-human primates. J Magn Reson Imaging. 2004, 19 (2): 168-175.
PubMed Central
PubMed
Google Scholar
Tenney JR, Duong TQ, King JA, Ludwig R, Ferris CF: Corticothalamic modulation during absence seizures:A functional MRI approach. Epilepsia. 2003, 44: 1133-1140.
PubMed Central
PubMed
Google Scholar
Tenney JR, Brevard ME, King JA, Ferris CF: fMRI of generalized absence seizures in conscious marmoset monkeys reveals corticothalamic activation. Epilepsia. 2004, 45: 1240-1247.
PubMed
Google Scholar
Febo M, Segarra A, Nair G, Schmidt K, Duong T, Ferris C: The neural consequences of repeated cocaine exposure revealed by functional MRI in awake rats. Neuropsychopharmacology. 2005, 30 (5): 936-943.
PubMed Central
CAS
PubMed
Google Scholar
Ferris CF, Kulkarni P, Sullivan MJJ, Harder JA, Messenger TL, Febo M: Pup suckling is more rewarding than cocaine: Evidence from fMRI and 3D computational analyses. J Neurosci. 2005, 25: 149-156.
CAS
PubMed
Google Scholar
Febo M, Segarra AC, Tenney JR, Sullivan R, Brevard M, Duong TQ, Ferris CF: Imaging cocaine-induced changes in the reward system in conscous rate. J Neurosci Methods. 2004, 139: 167-176.
PubMed Central
CAS
PubMed
Google Scholar
Skoubis PD, Hradil VP, Chin CL, Luo Y, Fox GB, McGaraughty S: Mapping brain activity following administration of a nicotinic acetylcholine receptor agonist, ABY-594, using functional magnetic resonance imaging in awake rats. Neuroscience. 2006, 137: 583-591.
CAS
PubMed
Google Scholar
Chin CL, Fox GB, Hradil VP, Osinski MA, McGaraughty SP, Skoubis PD, Cox BF, Luo Y: Pharmacological MRI in awake rats reveals neural activity in area postrema and nucleus tractus solitarius: relevance as a potential biomarker for detecting drug-induced emesis. NeuroImage. 2006, 33: 1152-1160.
PubMed
Google Scholar
Ervin G, Schmitz S, Nemeroff C, Prange AJ: Thyrotropin-releasing hormone and amphetamine produce different patterns of behavioral excitation in rats. Eur J Pharmacol. 1981, 72: 35-43.
CAS
PubMed
Google Scholar
Baldino F, Cowan A, Geller EB, Adler MW: Effects of antipsychotic and antianxiety drugs on the morphine abstinence syndrome in rats. J Pharmacol Exp Ther. 1979, 208: 63-66.
CAS
PubMed
Google Scholar
Hashiguchi H, Ye S, Morris M, Alexander N: Single and repeated environmental stress: effect on plasma oxytocin, corticosterone, catecholamines, and behavior. Physiol Behav. 1997, 61: 731-736.
CAS
PubMed
Google Scholar
Brevard ME, Duong TQ, King JA, Ferris CF: Changes in MRI signal intensity during hypercapnic challenge under conscious and anesthetized conditions. Magn Reson Imaging. 2003, 21 (9): 995-1001.
PubMed Central
CAS
PubMed
Google Scholar
Lahti KM, Ferris CF, Li F, Sotak CH, King JA: Imaging brain activity in conscious animals using functional MRI. J Neurosci Methods. 1998, 82 (1): 75-83.
CAS
PubMed
Google Scholar
Lahti KM, Ferris CF, Li F, Sotak CH, King JA: Comparison of evoked cortical activity in conscious and propofol-anesthetized rats using functional MRI. Magn Reson Med. 1999, 41 (2): 412-416.
CAS
PubMed
Google Scholar
Ludwig R, Bodgdanov G, King J, Allard A, Ferris CF: A dual RF resonator system for high-field functional magnetic resonance imaging of small animals. J Neurosci Methods. 2004, 132 (2): 125-135.
CAS
PubMed
Google Scholar
Sicard K, Shen Q, Brevard ME, Sullivan R, Ferris CF, King JA, Duong TQ: Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: implications for functional MRI studies. J Cereb Blood Flow Metab. 2003, 23 (4): 472-481.
PubMed Central
CAS
PubMed
Google Scholar
Tenney J, Duong T, King J, Ferris CF: Functional MRI of brain activity in a genetic rat model of absence seizures. Epilepsia. 2004, 45: 576-582.
PubMed Central
PubMed
Google Scholar
Gozzi A, Ceolin L, Schwarz A, Reese T, Bertani S, Crestan V, Bifone A: A multimodality investigation of cerebral hemodynamics and autoregulation in pharmacological MRI. Magn Reson Imaging. 2007, 25: 826-833.
PubMed
Google Scholar
Qiao M, Rushforth D, Wang R, Shaw R, Tomanek B, Dunn J, Tuor U: Blood-oxygen-level-dependent magnetic resonance signal and cerebral oxygenation responses to brain activation are enhanced by concurrent transient hypertension in rats. J Cereb Blood Flow Metab. 2007, 27: 1280-1289.
CAS
PubMed
Google Scholar
Wang B, Foniok T, Wamsteeker J, Qiao M, Tomanek B, Vivanco R, Tuor U: Transient blood pressure changes affect the functional magnetic resonance imaging detection of cerebral activation. Neuroimage. 2006, 31: 1-11.
PubMed
Google Scholar
Kalisch R, Delfinao M, Murer M, Auer D: The phenylephrine blood pressure clamp in pharmacologic magnetic resonance imaging: reduction of systemic confounds and improved detectability of drug-induced BOLD signal changes. Psychopharmacology (Berl). 2005, 180: 774-780.
CAS
Google Scholar
Ohata M, Takei H, Fredericks W, Rapoport S: Effects of immobilization stress on cerebral blood flow and cerebrovascular permeability in spontaneously hypertensive rats. J Cereb Blood Flow Metab. 1982, 2: 373-379.
CAS
PubMed
Google Scholar
Hernandez M, Brennan R, Bowman G: Cerebral blood flow autoregulation in the rat. Stroke. 1978, 9: 150-154.
CAS
PubMed
Google Scholar
Hoffman W, Edelman G, Kochs E, Werner C, Segil L, Albrecht R: Cerebral autoregulation in awake versus isoflurane-anesthetized rats. Anesth Analg. 1991, 73: 753-757.
CAS
PubMed
Google Scholar
Sokrab T, Johansson B: Regional cerebral blood flow in acute hypertension induced by adrenaline, noradrenaline and phenylephrine in the conscious rat. Acta Physiol Scand. 1989, 137: 101-106.
CAS
PubMed
Google Scholar
Kelley P, Sharkey J, Philip R, Ritchie IM: Acute cocaine alters cerebrovascular autoregulation in the rat neocortex. Brain Res Bull. 1993, 31: 581-585.
CAS
PubMed
Google Scholar
Febo M, Numan M, Ferris CF: Functional magnetic resonance imaging shows oxytocin activates brain regions associated with mother-pup bonding during sucking. J Neursoci. 2005, 25: 11637-11644.
CAS
Google Scholar
Berwick J, Martin C, Martindale J, Jones M, Johnston D, Zheng Y, Redgrave P, Mayhew J: Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex. J Cereb Blood Flow Metab. 2002, 22: 670-679.
PubMed
Google Scholar
Peeters RR, Tindemans I, De Schutter E, Linden Van der A: Comparing BOLD fMRI signal changes in the awake and anesthetized rat during electrical forepaw stimulation. Magn Reson Imaging. 2001, 19: 821-826.
CAS
PubMed
Google Scholar
Martin C, Martindale J, Berwick J, Mayhew J: Investigating neural – hemodynamic coupling and the hemodynamic response function in the awake rat. NeuroImage. 2006, 32: 33-48.
PubMed
Google Scholar
Shtoyerman E, Arieli A, Slovin H, Vanzetta I, Grinvald A: Long-term optical imaging and spectroscopy reveal mechanisms underlying the intrinsic signal and stability of cortical maps in V1 of behaving monkeys. J Neurosci. 2000, 20: 8111-8121.
CAS
PubMed
Google Scholar
Armstrong-James M, George MJ: Influence of anesthesia on spontaneous activity and receptive field size of single units in rat Sm1 neocortex. Exp Neurol. 1988, 99: 369-387.
CAS
PubMed
Google Scholar
Chapin JK, Lin RC: Mapping the body representation in the SI cortex of anesthetized and awake rats. J Comp Neurol. 1984, 229: 199-213.
CAS
PubMed
Google Scholar
Nicolelis MA, Baccala LA, Lin RC, Chapin JK: Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. Science. 1995, 268: 1353-1358.
CAS
PubMed
Google Scholar
Nicolelis M, Lin R, Woodward D, Chapin J: Induction of immediate spatiotemporal changes in thalamic networks by peripheral block of ascending cutaneous information. Nature. 1993, 361: 533-536.
CAS
PubMed
Google Scholar
Krupa DJ, Ghazanfar AA, Nicolelis MA: Immediate thalamic sensory plasticity depends on corticothalamic feedback. Proc Natl Acad Sci USA. 1999, 96: 8200-8205.
PubMed Central
CAS
PubMed
Google Scholar
Fanselow EE, Nicolelis MA: Behavioral modulation of tactile responses in the rat somatosensory system. J Neurosci. 1999, 19: 7603-7616.
CAS
PubMed
Google Scholar
Bao S, Chan VT, Merzenich MM: Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature. 2001, 412: 79-83.
CAS
PubMed
Google Scholar
Rutkowski RG, Weinberger NM: Encoding of learned importance of sound by magnitude of representational area in primary auditory cortex. Proc Natl Acad Sci USA. 2005, 102: 13664-13669.
PubMed Central
CAS
PubMed
Google Scholar
Tolias AS, Sultan F, Augath M, Oeltermann A, Tehovnik EJ, Schiller PH, Logothetis NK: Mapping cortical activity elicited with electrical microstimulation using fMRI in the macaque. Neuron. 2005, 48: 901-911.
CAS
PubMed
Google Scholar
Bard CP: A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am J Physiol. 1928, 84: 490-516.
Google Scholar
Ferris CF, Melloni RH, Koppel G, Perry KW, Fuller RW, Delville Y: Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J Neurosci. 1997, 17 (11): 4331-4340.
CAS
PubMed
Google Scholar
Grimes JM, Melloni RH: Serotonin modulates offensive attck in adolescent anabolic steroid-treated hamsters. Pharmacol Biochem Behav. 2002, 73 (3): 713-721.
CAS
PubMed
Google Scholar
Ricci LA, Rasakham K, Grimes JM, Melloni RH: Serotonin-1A receptor activity and expression modulate adolescent anabolic/androgenic steroid-induced aggression in hamsters. Pharmacol Biochem Behav. 2006, 85 (1): 1-11.
CAS
PubMed
Google Scholar
Ferris CF, Pilapil CG, Hayden-Hixson D, Wiley R, Koh ET: Evidence for two functionally and anatomically distinct populations of magnocellular neurons in the golden hamster. J Neuroendocrinol. 1991, 4: 193-205.
Google Scholar
Delville Y, Mansour KM, Ferris CF: Serotonin blocks vasopressin-facilitated offensive aggression: interactions within the ventrolateral hypothalamus of golden hamsters. Physiol Behav. 1996, 59 (4–5): 813-816.
CAS
PubMed
Google Scholar
Altemus M, Cizza G, Gold PW: Chronic fluoxetine treatment reduces hypothalamic vasopressin secretion in vitro. Brain Res. 1992, 593 (2): 311-313.
CAS
PubMed
Google Scholar
Hajnal JV, Myers R, Oatridge A, Schwieseo JE, Young IR, Bydder GM: Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med. 1994, 31: 283-291.
CAS
PubMed
Google Scholar
Yetkin FZ, Haughton VM, Cox RW, Hyde J, Birn RM, Wong EC, Prost R: Effect of motion outside the field of view on functional MR. AJNR Am J Neuroradiol. 1996, 17 (6): 1005-1009.
CAS
PubMed
Google Scholar
Birn RM, Bandettini PA, Cox RW, Jesmanowicz A, Shaker R: Magnetic field changes in the human brain due to swallowing or speaking. Magn Reson Med. 1998, 40 (1): 55-60.
CAS
PubMed
Google Scholar
Turner R, Howseman A, Rees G, Josephs O: Functional imaging with magnetic resonance. Human Brain Function. Edited by: Frackowiak RSJ. 1997, San Diego: Academic Press, 467-486.
Google Scholar
Arnauld E, Czernichow P, Fumoux F, Vincent JD: The effects of hypotension and hypovolaemia on the liberation of vasopressin during haemorrhage in the unanesthetized monkey. Pfluegers Arch. 1977, 371: 193-200.
CAS
Google Scholar
Scremin OU: Cerebral vascular system. The Rat Nervous System. Edited by: Paxinos G. 1995, New York: Academic Press, 3-35.
Google Scholar
Woods RP, Cherry SR, Mazziotta JC: Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr. 1992, 16: 620-633.
CAS
PubMed
Google Scholar
Woods R, Grafton S, Holmes C, Cherry S, Mazziotta J: Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr. 1998, 22: 139-152.
CAS
PubMed
Google Scholar
Woods R, Grafton S, Watson J, Sicotte N, Mazziotta J: Automated image registration: II. Intersubject validation of linear and nonlinear models. J Comput Assist Tomogr. 1998, 22: 153-165.
CAS
PubMed
Google Scholar
Cox RW: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996, 29 (3): 162-173.
CAS
PubMed
Google Scholar
Friston KJ, Williams SC, Howard R, Frackowiak RS, Turner R: Movement-related effects in fMRI time-series. Magn Reson Med. 1996, 35: 346-355.
CAS
PubMed
Google Scholar
Freire L, Mangin JF: Motion correction algorithms may create spurious brain activations in the absence of subject motion. NeuroImage. 2001, 14: 709-722.
CAS
PubMed
Google Scholar
Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ, Oakes TR: Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum Brain Mapp. 2006, 27 (10): 779-788.
PubMed
Google Scholar
Strupp JP: Stimulate:a GUI based fMRI analysis software package. Neuroimage. 1996, 3: S607.
Google Scholar
Genovese CR, Lazar NA, Nichols T: Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage. 2002, 15: 870-878.
PubMed
Google Scholar
Hubel DH, Wiesel TN: Receptive fields of single neurones in the cat's striate cortex. J Physiol. 1959, 148: 574-591.
PubMed Central
CAS
PubMed
Google Scholar
Rakic P: Evolving concepts of cortical radial and areal specification. Prog Brain Res. 2002, 136: 265-280.
PubMed
Google Scholar
Boas DA, Jones SR, Devor A, Huppert TJ, Dale AM: A vascular anatomical network model of the spatio-temporal response to brain activation. Neuroimage. 2008, 40 (3): 1116-1129.
PubMed Central
PubMed
Google Scholar
Harel N, Lee SP, Nagaoka T, Kim DS, Kim SG: Origin of negative blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab. 2002, 22: 908-917.
PubMed
Google Scholar
Shmuel A, Augath M, Oeltermann A, Logothetis NK: Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci. 2006, 9: 569-577.
CAS
PubMed
Google Scholar
Shmuel A, Yacoub E, Pfeuffer J, Moortele Van de PF, Adriany G, Hu X, Ugurbil K: Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the posiitive response in the human brain. Neuron. 2002, 36: 1195-1210.
CAS
PubMed
Google Scholar
Devor A, Ulbert I, Dunn AK, Narayanan SN, Jones SR, Anderrmann ML, Boas DA, Dale AM: Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity. Proc Natl Acad Sci USA. 2005, 102: 3822-3827.
PubMed Central
CAS
PubMed
Google Scholar
Devor A, Tian P, Nishimura N, Teng IC, Hillman EM, Narayanan SN, Ulbert I, Boas DA, Kleinfeld D, Dale AM: Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. J Neurosci. 2007, 27: 4452-4459.
PubMed Central
CAS
PubMed
Google Scholar
de Bruin JP, van Oyen HG, Poll Van de N: Behvioural changes following lesions of the orbital prefrontal cortex in male rats. Behav Brain Res. 1983, 10 (2-3): 209-232.
CAS
PubMed
Google Scholar
Best M, Williams JM, Coccaro EF: Evidence for a dysfunctional prefrontal circuit in patients with an impulsive aggressive disorder. Proc Natl Acad Sci USA. 2002, 99: 8448-8453.
PubMed Central
CAS
PubMed
Google Scholar
Gammie SC, Negron A, Newman SM, Rhodes JS: Corticotropin-releasing factor inhibits maternal aggression in mice. Behavioral Neuroscience. 2004, 118: 805-814.
CAS
PubMed
Google Scholar
Davis ES, Marler C: c-Fos changes following aggressive encounter in female California mice: a synthesis of behavior, hormone changes and neural activity. Neuroscience. 2004, 127: 611-624.
CAS
PubMed
Google Scholar
Gobrogge KL, Liu Y, Jia X, Wang Z: Anterior hypothalamic neural activation and neurochemical associations with aggression in pair-bonded male prairie voles. The Journal of Comparative Neurology. 2007, 502: 1109-1122.
PubMed
Google Scholar
Miczek KA, Brykczynski T, Grossman SP: Differential effects of lesions in the amygdala, periamygdaloid cortex, and stria terminalis on aggressive behaviors in rats. J Comp Physiol Psychol. 1974, 87 (4): 760-771.
CAS
PubMed
Google Scholar
Rosvold HE, Mirsky AF, Pribram KH: Influence of amygdalectomy on social behavior in monkeys. J Comp Physiol Psychol. 1954, 47 (3): 173-178.
CAS
PubMed
Google Scholar
Potegal M, Hebert M, DeCoster M, Meyerhoff J: Brief, high-frequency stimulation of the corticomedial amygdala induces a delayed and prolonged increase of aggressiveness in male Syrian golden hamsters. Behavioral Neuroscience. 1996, 110: 401-412.
CAS
PubMed
Google Scholar
Martinez M, Phillips PJ, Herbert JL: Adaptation in patterns of c-fos expression in the brain associated with exposure to either single or repeated social stress in male rats. European Journal of Neuroscience. 1998, 10: 20-33.
CAS
PubMed
Google Scholar
Veening JG, Coolen LM, de Jong TR, Joosten HW, De Boer SF, Koolhaas JM, al e: Do similar neural systems subserve aggressive and sexual behavior in male rats? Insights from c-fos and pharmacological studies. Eur J Pharmacol. 2005, 526 (1-3): 226-239.
CAS
PubMed
Google Scholar
Kollack-Walker S, Newman SW: Mating and agonistic behavior produce different patterns of Fos immunolabeling in the male Syrian hamster brain. Neuroscience. 1995, 66: 721-736.
CAS
PubMed
Google Scholar
Gammie SC, Nelson RJ: c-FOS and p-CREB activation and maternal aggression in mice. Brain Research. 2001, 898: 232-241.
CAS
PubMed
Google Scholar
Joppa MA, Meisel RL, Garber MA: c-Fos expression in female hamster brain following sexual and aggressive behaviors. Neuroscience. 1995, 68: 783-792.
CAS
PubMed
Google Scholar
Luiten PGM, Koolhaas JM, De Boer SF, Koopmans SJ: The cortico-medial amygdala in the central nervous system organization of agonistic behavior. Brain Research. 1985, 332: 283-297.
CAS
PubMed
Google Scholar
Halasz J, Liposits Z, Meelis W, Kruk MR, Haller J: Hypothalamic attack area-mediated activation of the forebrain in aggression. Neuroreport. 2002, 13: 1267-1270.
PubMed
Google Scholar
King MB, Hoebel BG: Killing elicited by brain stimulation in rats. Communication in Behavioral Biology. 1968, 2: 173-177.
Google Scholar
Bergquist EH: Output pathways of hypothalamic mechanisms for sexual, aggressive and other motivated behaviors in opossum. J Comp Physiol Psychol. 1970, 70 (3): 389-398.
CAS
PubMed
Google Scholar
DeSisto MJ, Huston JP: Aggression and reward from stimulating common sites in the posterior lateral hypothalamus of rats. Communication in Behavioral Biology. 1971, 6: 295-306.
Google Scholar
Panksepp J: Aggression elicited by electrical stimulation of the hypothalamus in albino rats. Physiol Behav. 1971, 6 (4): 321-329.
CAS
PubMed
Google Scholar
Woodworth CH: Attack elicited in rats by electrical stimulation of the lateral hypothalamus. Physiol Behav. 1971, 6 (4): 345-353.
CAS
PubMed
Google Scholar
Bermond B, Mos J, Meelis W, Poel van der AM, Kruk MR: Aggression induced by stimulation of the hypothalamus: Effects of androgens. Pharmacol Biochem Behav. 1982, 16 (1): 41-45.
CAS
PubMed
Google Scholar
Kruk MR, Poel Van der AM, Meelis W, Hermans J, Mostert PG, Mos J, Lohman AHM: Discriminant analysis of the localization of aggression-inducing electrode placements in the hypothlamus of male rats. Brain Research. 1983, 260: 61-79.
CAS
PubMed
Google Scholar
Lammers JHCM, Kruk MR, Meelis W, Poel Van der AM: Hypothalamic substrates for brain stimulation-induced attack, teeth-chattering and social grooming in the rat. Brain Research. 1988, 449: 311-327.
CAS
PubMed
Google Scholar