Waslick BD, Kandel R, Kakouros A: Depression in children and adolescents: an overview. The many faces of depression in children and adolescents. Edited by: Shaffer D and Waslick BD. 2002, Washington DC, American Psychiatric Publishing, Inc., 1-29.
Google Scholar
Costello EJ, Mustillo S, Erkanli A, Keeler G, Angold A: Prevalence and development of psychiatric disorders in childhood and adolescence. Arch Gen Psychiatry. 2003, 60: 837-844. 10.1001/archpsyc.60.8.837.
Article
PubMed
Google Scholar
Hasin DS, Goodwin RD, Stinson FS, Grant BF: Epidemiology of major depressive disorder: results from the National Epidemiologic Survey on Alcoholism and Related Conditions. Arch Gen Psychiatry. 2005, 62: 1097-1106. 10.1001/archpsyc.62.10.1097.
Article
PubMed
Google Scholar
Ciraulo DA, Tsirulnik-Barts L, Shader RI, Greenblatt DJ: Clinical pharmacology and therapeutics of antidepressants. Pharmacotherapy of depression. Edited by: Ciraulo DA and Shader RI. 2004, Totowa NJ, Humana Press, 33-119.
Chapter
Google Scholar
Taylor C, Fricker AD, Devi LA, Gomes I: Mechanisms of action of antidepressants: from neurotransmitter systems to signaling pathways. Cell Signal. 2005, 17: 549-557. 10.1016/j.cellsig.2004.12.007.
Article
PubMed Central
CAS
PubMed
Google Scholar
Feighner JP: Mechanism of action of antidepressant medications. J Clin Psychiatry. 1999, 60: 4-11.
Article
CAS
PubMed
Google Scholar
Frazer A: Norepinephrine involvement in antidepressant action. J Clin Psychiatry. 2000, 61: 25-30.
CAS
PubMed
Google Scholar
Gould TD, Manji HK: Signaling networks in the pathophysiology and treatment of mood disorders. J Psychosom Res. 2002, 53: 687-697. 10.1016/S0022-3999(02)00426-9.
Article
PubMed
Google Scholar
Coyle JT, Duman RS: Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron. 2003, 38: 157-160. 10.1016/S0896-6273(03)00195-8.
Article
CAS
PubMed
Google Scholar
Delgado PL: How antidepressants help depression: mechanisms of action and clinical response. J Clin Psychiatry. 2004, 65: 25-30.
CAS
PubMed
Google Scholar
De Vivo M, Maayani S: Characterization of the 5-hydroxytryptamine1a receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J Pharmacol Exp Ther. 1986, 238: 248-253.
CAS
PubMed
Google Scholar
De Vivo M, Maayani S: Stimulation and inhibition of adenylyl cyclase by distinct 5-hydroxytryptamine receptors. Biochem Pharmacol. 1990, 40: 1551-1558. 10.1016/0006-2952(90)90453-R.
Article
CAS
PubMed
Google Scholar
Dumuis A, Sebben M, Bockaert J: Pharmacology of 5-hydroxytryptamine-1A receptors which inhibit cAMP production in hippocampal and cortical neurons in primary culture. Mol Pharmacol. 1988, 33: 178-186.
CAS
PubMed
Google Scholar
Undie AS, Weinstock J, Sarau HM, Friedman E: Evidence for a distinct D1-like dopamine receptor that couples to activation of phosphoinositide metabolism in brain. J Neurochem. 1994, 62: 2045-2048.
Article
CAS
PubMed
Google Scholar
Dwivedi Y, Agrawal AK, Rizavi HS, Pandey GN: Antidepressants reduce phosphoinositide-specific phospholipase C (PI-PLC) activity and the mRNA and protein expression of selective PLC beta 1 isozyme in rat brain. Neuropharmacology. 2002, 43: 1269-1279. 10.1016/S0028-3908(02)00253-8.
Article
CAS
PubMed
Google Scholar
Fumagalli F, Molteni R, Calabrese F, Frasca A, Racagni G, Riva MA: Chronic fluoxetine administration inhibits extracellular signal-regulated kinase 1/2 phosphorylation in rat brain. J Neurochem. 2005, 93: 1551-1560. 10.1111/j.1471-4159.2005.03149.x.
Article
CAS
PubMed
Google Scholar
Chen J, Rasenick MM: Chronic antidepressant treatment facilitates G protein activation of adenylyl cyclase without altering G protein content. J Pharmacol Exp Ther. 1995, 275: 509-517.
CAS
PubMed
Google Scholar
Hines LM, Tabakoff B: Platelet adenylyl cyclase activity: a biological marker for major depression and recent drug use. Biol Psychiatry. 2005, 58: 955-962. 10.1016/j.biopsych.2005.05.040.
Article
CAS
PubMed
Google Scholar
Odagaki Y, Garcia-Sevilla JA, Huguelet P, La Harpe R, Koyama T, Guimon J: Cyclic AMP-mediated signaling components are upregulated in the prefrontal cortex of depressed suicide victims. Brain Res. 2001, 898: 224-231. 10.1016/S0006-8993(01)02188-6.
Article
CAS
PubMed
Google Scholar
Shimizu M, Nishida A, Zensho H, Yamawaki S: Chronic antidepressant exposure enhances 5-hydroxytryptamine7 receptor- mediated cyclic adenosine monophosphate accumulation in rat frontocortical astrocytes. J Pharmacol Exp Ther. 1996, 279: 1551-1558.
CAS
PubMed
Google Scholar
Qu Y, Chang L, Klaff J, Seemann R, Rapoport SI: Imaging brain phospholipase A2-mediated signal transduction in response to acute fluoxetine administration in unanesthetized rats. Neuropsychopharmacology. 2003, 28: 1219-1226. 10.1038/sj.npp.1300177.
Article
CAS
PubMed
Google Scholar
Nibuya M, Nestler EJ, Duman RS: Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci. 1996, 16: 2365-2372.
CAS
PubMed
Google Scholar
Yamada S, Yamamoto M, Ozawa H, Riederer P, Saito T: Reduced phosphorylation of cyclic AMP-responsive element binding protein in the postmortem orbitofrontal cortex of patients with major depressive disorder. J Neural Transm. 2003, 110: 671-680. 10.1007/s00702-002-0810-8.
Article
CAS
PubMed
Google Scholar
Fukuda H, Nishida A, Saito H, Shimizu M, Yamawaki S: Imipramine stimulates phospholipase C activity in rat brain. Neurochem Int. 1994, 25: 567-571. 10.1016/0197-0186(94)90155-4.
Article
CAS
PubMed
Google Scholar
Pacheco MA, Stockmeier C, Meltzer HY, Overholser JC, Dilley GE, Jope RS: Alterations in phosphoinositide signaling and G-protein levels in depressed suicide brain. Brain Res. 1996, 723: 37-45. 10.1016/0006-8993(96)00207-7.
Article
CAS
PubMed
Google Scholar
Butler PD, Barkai AI: Agonist-stimulation of cerebral phosphoinositide turnover following long-term treatment with antidepressants. Adv Exp Med Biol. 1987, 221: 531-547.
Article
CAS
PubMed
Google Scholar
Osborne NN: Tricyclic antidepressants, mianserin, and ouabain stimulate inositol phosphate formation in vitro in rat cortical slices. Neurochem Res. 1988, 13: 105-111. 10.1007/BF00973321.
Article
CAS
PubMed
Google Scholar
Sanders-Bush E, Breeding M, Knoth K, Tsutsumi M: Sertraline-induced desensitization of the serotonin 5HT-2 receptor transmembrane signaling system. Psychopharmacology (Berlin). 1989, 99: 64-69. 10.1007/BF00634454.
Article
CAS
Google Scholar
Pandey GN, Pandey SC, Davis JM: Effect of desipramine on inositol phosphate formation and inositol phospholipids in rat brain and human platelets. Psychopharmacol Bull. 1991, 27: 255-261.
CAS
PubMed
Google Scholar
Pandey SC, Davis JM, Schwertz DW, Pandey GN: Effect of antidepressants and neuroleptics on phosphoinositide metabolism in human platelets. J Pharmacol Exp Ther. 1991, 256: 1010-1018.
CAS
PubMed
Google Scholar
Morishita S, Aoki S, Watanabe S: Different effect of desipramine on protein kinase C in platelets between bipolar and major depressive disorders. Psychiatry Clin Neurosci. 1999, 53: 11-15. 10.1046/j.1440-1819.1999.00479.x.
Article
CAS
PubMed
Google Scholar
Morishita S, Aoki S: Effects of tricyclic antidepressants on protein kinase C activity in rabbit and human platelets in vivo. J Affect Disord. 2002, 70: 329-332. 10.1016/S0165-0327(01)00333-0.
Article
CAS
PubMed
Google Scholar
Mann CD, Vu TB, Hrdina PD: Protein kinase C in rat brain cortex and hippocampus: effect of repeated administration of fluoxetine and desipramine. Br J Pharmacol. 1995, 115: 595-600.
Article
PubMed Central
CAS
PubMed
Google Scholar
Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, Manji HK, Chen G: The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci. 2003, 23: 7311-7316.
CAS
PubMed
Google Scholar
Shimizu M, Nishida A, Hayakawa H, Yamawaki S: Ca2+ release from inositol 1,4,5-trisphosphate-sensitive Ca2+ store by antidepressant drugs in cultured neurons of rat frontal cortex. J Neurochem. 1993, 60: 595-601. 10.1111/j.1471-4159.1993.tb03190.x.
Article
CAS
PubMed
Google Scholar
Cuellar-Quintero JL, Garcia DE, Cruzblanca H: The antidepressant imipramine inhibits the M-type K+ current in rat sympathetic neurons. Neuroreport. 2001, 12: 2195-2198. 10.1097/00001756-200107200-00030.
Article
CAS
PubMed
Google Scholar
Coppell AL, Pei Q, Zetterstrom TS: Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology. 2003, 44: 903-910. 10.1016/S0028-3908(03)00077-7.
Article
CAS
PubMed
Google Scholar
Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, Agerman K, Haapasalo A, Nawa H, Aloyz R, Ernfors P, Castren E: Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci. 2003, 23: 349-357.
CAS
PubMed
Google Scholar
Xu H, Steven RJ, Li XM: Dose-related effects of chronic antidepressants on neuroprotective proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus. Neuropsychopharmacology. 2003, 28: 53-62. 10.1038/sj.npp.1300009.
Article
CAS
PubMed
Google Scholar
Wong ML, Khatri P, Licinio J, Esposito A, Gold PW: Identification of hypothalamic transcripts upregulated by antidepressants. Biochem Biophys Res Commun. 1996, 229: 275-279. 10.1006/bbrc.1996.1792.
Article
CAS
PubMed
Google Scholar
Manev R, Uz T, Manev H: Fluoxetine increases the content of neurotrophic protein S100beta in the rat hippocampus. Eur J Pharmacol. 2001, 420: R1-R2. 10.1016/S0014-2999(01)00989-X.
Article
CAS
PubMed
Google Scholar
Dziedzicka-Wasylewska M, Dlaboga D, Pierzchala-Koziec K, Rogoz Z: Effect of tianeptine and fluoxetine on the levels of Met-enkephalin and mRNA encoding proenkephalin in the rat. J Physiol Pharmacol. 2002, 53: 117-125.
CAS
PubMed
Google Scholar
Duman RS, Nakagawa S, Malberg J: Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology. 2001, 25: 836-844. 10.1016/S0893-133X(01)00358-X.
Article
CAS
PubMed
Google Scholar
Malberg JE, Eisch AJ, Nestler EJ, Duman RS: Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000, 20: 9104-9110.
CAS
PubMed
Google Scholar
Manev H, Uz T, Smalheiser NR, Manev R: Antidepressants alter cell proliferation in the adult brain in vivo and in neural cultures in vitro. Eur J Pharmacol. 2001, 411: 67-70. 10.1016/S0014-2999(00)00904-3.
Article
CAS
PubMed
Google Scholar
Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R: Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003, 301: 805-809. 10.1126/science.1083328.
Article
CAS
PubMed
Google Scholar
Contreras CM, Rodriguez-Landa JF, Gutierrez-Garcia AG, Bernal-Morales B: The lowest effective dose of fluoxetine in the forced swim test significantly affects the firing rate of lateral septal nucleus neurones in the rat. J Psychopharmacol. 2001, 15: 231-236.
Article
CAS
PubMed
Google Scholar
Dong J, Blier P: Modification of norepinephrine and serotonin, but not dopamine, neuron firing by sustained bupropion treatment. Psychopharmacology (Berl). 2001, 155: 52-57. 10.1007/s002130000665.
Article
CAS
Google Scholar
Langosch JM, Walden J: Effects of the atypical antidepressant trimipramine on neuronal excitability and long-term potentiation in guinea pig hippocampal slices. Prog Neuropsychopharmacol Biol Psychiatry. 2002, 26: 299-302. 10.1016/S0278-5846(01)00269-X.
Article
CAS
PubMed
Google Scholar
Lesch KP, Manji HK: Signal-transducing G proteins and antidepressant drugs: evidence for modulation of alpha subunit gene expression in rat brain. Biol Psychiatry. 1992, 32: 549-579. 10.1016/0006-3223(92)90070-G.
Article
CAS
PubMed
Google Scholar
Drigues N, Poltyrev T, Bejar C, Weinstock M, Youdim MB: cDNA gene expression profile of rat hippocampus after chronic treatment with antidepressant drugs. J Neural Transm. 2003, 110: 1413-1436. 10.1007/s00702-003-0077-8.
Article
CAS
PubMed
Google Scholar
Landgrebe J, Welzl G, Metz T, van Gaalen MM, Ropers H, Wurst W, Holsboer F: Molecular characterisation of antidepressant effects in the mouse brain using gene expression profiling. J Psychiatr Res. 2002, 36: 119-129. 10.1016/S0022-3956(01)00061-9.
Article
CAS
PubMed
Google Scholar
Palotas M, Palotas A, Puskas LG, Kitajka K, Pakaski M, Janka Z, Molnar J, Penke B, Kalman J: Gene expression profile analysis of the rat cortex following treatment with imipramine and citalopram. Int J Neuropsychopharmacol. 2004, 7: 401-413. 10.1017/S1461145704004493.
Article
CAS
PubMed
Google Scholar
Coupland NJ, Ogilvie CJ, Hegadoren KM, Seres P, Hanstock CC, Allen PS: Decreased prefrontal Myo-inositol in major depressive disorder. Biol Psychiatry. 2005, 57: 1526-1534. 10.1016/j.biopsych.2005.02.027.
Article
CAS
PubMed
Google Scholar
Barkai AI, Dunner DL, Gross HA, Mayo P, Fieve RR: Reduced myo-inositol levels in cerebrospinal fluid from patients with affective disorder. Biol Psychiatry. 1978, 13: 65-72.
CAS
PubMed
Google Scholar
Einat H, Karbovski H, Korik J, Tsalah D, Belmaker RH: Inositol reduces depressive-like behaviors in two different animal models of depression. Psychopharmacology (Berl). 1999, 144: 158-162. 10.1007/s002130050989.
Article
CAS
Google Scholar
Einat H, Clenet F, Shaldubina A, Belmaker RH, Bourin M: The antidepressant activity of inositol in the forced swim test involves 5-HT(2) receptors. Behav Brain Res. 2001, 118: 77-83. 10.1016/S0166-4328(00)00314-4.
Article
CAS
PubMed
Google Scholar
Levine J: Controlled trials of inositol in psychiatry. Eur Neuropsychopharmacol. 1997, 7: 147-155. 10.1016/S0924-977X(97)00409-4.
Article
CAS
PubMed
Google Scholar
Manji HK, Chen G: Post-receptor signaling pathways in the pathophysiology and treatment of mood disorders. Curr Psychiatry Rep. 2000, 2: 479-489. 10.1007/s11920-000-0006-6.
Article
CAS
PubMed
Google Scholar
Shelton RC: Intracellular mechanisms of antidepressant drug action. Harv Rev Psychiatry. 2000, 8: 161-174. 10.1093/hrp/8.4.161.
Article
CAS
PubMed
Google Scholar
Nishizuka Y: Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992, 258: 607-614. 10.1126/science.1411571.
Article
CAS
PubMed
Google Scholar
Sarri E, Picatoste F, Claro E: Neurotransmitter-specific profiles of inositol phosphates in rat brain cortex: relation to the mode of receptor activation of phosphoinositide phospholipase C1. The Journal of Pharmacology and Experimental Therapeutics. 1995, 272: 77-84.
CAS
PubMed
Google Scholar
Claro E, Fain JN, Picatoste F: Noradrenaline stimulation unbalances the phosphoinositide cycle in rat cerebral cortical slices. J Neurochem. 1993, 60: 2078-2086. 10.1111/j.1471-4159.1993.tb03492.x.
Article
CAS
PubMed
Google Scholar
Tyeryar KR, Undie AS: Diverse antidepressants modulate one or more components of phosphoinositide signaling cascades in depression-relevant brain regions. Soc Neurosci Abstr. 2002, 27: 306-306.
Google Scholar
Undie AS, Friedman E: Stimulation of a dopamine D1 receptor enhances inositol phosphates formation in rat brain. J Pharmacol Exp Ther. 1990, 253: 987-992.
CAS
PubMed
Google Scholar
Pandey GN, Dwivedi Y, Kumari R, Janicak PG: Protein kinase C in platelets of depressed patients. Biol Psychiatry. 1998, 44: 909-911. 10.1016/S0006-3223(97)00535-0.
Article
CAS
PubMed
Google Scholar
Lucki I, Singh A, Kreiss DS: Antidepressant-like behavioral effects of serotonin receptor agonists. Neurosci Biobehav Rev. 1994, 18: 85-95. 10.1016/0149-7634(94)90039-6.
Article
CAS
PubMed
Google Scholar
Cryan JF, Lucki I: Antidepressant-like behavioral effects mediated by 5-Hydroxytryptamine(2C) receptors. J Pharmacol Exp Ther. 2000, 295: 1120-1126.
CAS
PubMed
Google Scholar
D'Aquila PS, Collu M, Pani L, Gessa GL, Serra G: Antidepressant-like effect of selective dopamine D1 receptor agonists in the behavioural despair animal model of depression. Eur J Pharmacol. 1994, 262: 107-111. 10.1016/0014-2999(94)90033-7.
Article
PubMed
Google Scholar
Tyeryar KR, Undie AS: Tandem regulation of phosphoinositide signaling and acute behavioral effects induced by antidepressant agents in rats. Psychopharmacology (Berl). 2007, 193: 271-282. 10.1007/s00213-007-0784-1.
Article
CAS
Google Scholar
Downes CP, Carter AN: Phosphoinositide 3-kinase: a new effector in signal transduction?. Cell Signal. 1991, 3: 501-513. 10.1016/0898-6568(91)90027-R.
Article
CAS
PubMed
Google Scholar
Daw MI, Bortolotto ZA, Saulle E, Zaman S, Collingridge GL, Isaac JT: Phosphatidylinositol 3 kinase regulates synapse specificity of hippocampal long-term depression. Nat Neurosci. 2002, 5: 835-836. 10.1038/nn903.
Article
CAS
PubMed
Google Scholar
Edstrom A, Ekstrom PA: Role of phosphatidylinositol 3-kinase in neuronal survival and axonal outgrowth of adult mouse dorsal root ganglia explants. J Neurosci Res. 2003, 74: 726-735. 10.1002/jnr.10686.
Article
PubMed
Google Scholar
Hsiung SC, Adlersberg M, Arango V, Mann JJ, Tamir H, Liu KP: Attenuated 5-HT1A receptor signaling in brains of suicide victims: involvement of adenylyl cyclase, phosphatidylinositol 3-kinase, Akt and mitogen-activated protein kinase. J Neurochem. 2003, 87: 182-194. 10.1046/j.1471-4159.2003.01987.x.
Article
CAS
PubMed
Google Scholar
Undie AS: Relationship between dopamine agonist stimulation of inositol phosphate formation and cytidine diphosphate-diacylglycerol accumulation in brain slices. Brain Res. 1999, 816: 286-294. 10.1016/S0006-8993(98)01076-2.
Article
CAS
PubMed
Google Scholar
Panchalingam S, Undie AS: SKF83959 exhibits biochemical agonism by stimulating phosphoinositide hydrolysis and [35S]GTPgS binding in rat and monkey brain. Neuropharmacology. 2001, 40: 826-837. 10.1016/S0028-3908(01)00011-9.
Article
CAS
PubMed
Google Scholar
Godfrey PP: Potentiation by lithium of CMP-phosphatidate formation in carbachol-stimulated rat cerebral-cortical slices and its reversal by myo-inositol. Biochem J. 1989, 258: 621-624.
Article
PubMed Central
CAS
PubMed
Google Scholar
Undie AS, Friedman E: Selective dopaminergic mechanism of dopamine and SKF38393 stimulation of inositol phosphate formation in rat brain. Eur J Pharmacol. 1992, 226: 297-302. 10.1016/0922-4106(92)90046-X.
Article
CAS
PubMed
Google Scholar
Stubbs EB, Agranoff BW: Lithium enhances muscarinic receptor-stimulated CDP-diacylglycerol formation in inositol-depleted SK-N-SH neuroblastoma cells. J Neurochem. 1993, 60: 1292-1299. 10.1111/j.1471-4159.1993.tb03289.x.
Article
CAS
PubMed
Google Scholar
Billah MM, Michell RH: Stimulation of the breakdown and resynthesis of phosphatidylinositol in rat hepatocytes by angiotensin, vasopressin and adrenaline. Biochem Soc Trans. 1978, 6: 1033-1035.
Article
CAS
PubMed
Google Scholar