Baptiste DC, Fehling MG: Pathophysiology of cervical myelopathy. Spine J. 2006, 6 (6 Suppl): 190S-197S. 10.1016/j.spinee.2006.04.024.
Article
PubMed
Google Scholar
Uchida K, Baba H, Maezawa Y, Furukawa S, Omiya M, Kokubo Y, Kubota C, Nakajima H: Increased expression of neurotrophins and their receptors in the mechanically compressed spinal cord of the spinal hyperostotic mouse (twy/twy). Acta Neuropathol. 2003, 106: 29-36.
CAS
PubMed
Google Scholar
Ghafoor AU, Martin TW, Gopalakrishnan S, Viswamitra S: Caring for the patients with cervical spine injuries: what have we learned?. J Clin Anesth. 2005, 17: 640-649. 10.1016/j.jclinane.2005.04.003.
Article
PubMed
Google Scholar
Uchida K, Nakajima H, Sato R, Yayama T, Erisa S, Mwaka ES, Kobayashi S, Baba Hisatoshi: Cervical spondylotic myelopathy associated with kyphosis or sagittal sigmoid alignment: outcome after anterior or posterior decompression. J Neurosurg Spine. 11: 521-528.
Hayes RL, Yang K, Raghupathi R, McIntosh TK: Changes in gene expression following traumatic brain injury in the rat. J Neurotrauma. 1995, 12: 779-790. 10.1089/neu.1995.12.779.
Article
CAS
PubMed
Google Scholar
Raghupathi R, McIntosh TK: Regionally and temporally distinct patterns of induction of c-fos, c-jun and junB mRNAs following experimental brain injury in the rat. Brain Res Mol Brain Res. 1996, 37: 134-144. 10.1016/0169-328X(95)00289-5.
Article
CAS
PubMed
Google Scholar
Sall JM, Morehead M, Murphy S, Goldman H, Walker PD: Alterations in CNS gene expression in a rodent model of moderate traumatic brain injury complicated by acute alcohol intoxication. Exp Neurol. 1996, 139: 257-268. 10.1006/exnr.1996.0099.
Article
CAS
PubMed
Google Scholar
Yakovlev AG, Faden AI: Molecular biology of CNS injury. J Neurotrauma. 1995, 12: 767-777. 10.1089/neu.1995.12.767.
Article
CAS
PubMed
Google Scholar
Carmel JB, Galante A, Soteropoulos P, Tolias P, Recce M, Young W, Hart RP: Gene expression profiling of acute spinal cord injury reveals spreading inflammatory signals and neuron loss. Physiol Genomic. 2001, 7: 201-213.
Article
CAS
Google Scholar
Song G, Cechvala C, Resnick DK, Dempsey RJ, Rao VL: GeneChip analysis after acute spinal cord injury in rat. J Neurochem. 2001, 79: 804-815. 10.1046/j.1471-4159.2001.00626.x.
Article
CAS
PubMed
Google Scholar
Tachibana T, Noguchi K, Ruda MA: Analysis of gene expression following spinal cord injury in rat using complementary DNA microarray. Neurosci Lett. 2002, 327: 133-137. 10.1016/S0304-3940(02)00375-0.
Article
CAS
PubMed
Google Scholar
Aimone JB, Leasure JL, Perreau VM, Thallmair M: Spatial and temporal gene expression profiling of the contused rat spinal cord. Exp Neurol. 2004, 189: 204-221. 10.1016/j.expneurol.2004.05.042.
Article
CAS
PubMed
Google Scholar
Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI: Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol. 2003, 53: 454-468. 10.1002/ana.10472.
Article
CAS
PubMed
Google Scholar
Popovich PG, Strokes BT, Whitacre CC: Concept of autoimmunity following spinal cord injury: possible roles for T lymphocytes in the traumatized central nerve system. J Neurosci Res. 1996, 45: 349-363. 10.1002/(SICI)1097-4547(19960815)45:4<349::AID-JNR4>3.0.CO;2-9.
Article
CAS
PubMed
Google Scholar
Morrison B, Saatman KE, Meaney DF, McIntosh TK: In vitro central nervous system models of mechanically induced trauma. A review. J Neurotrauma. 1998, 15: 911-928. 10.1089/neu.1998.15.911.
Article
PubMed
Google Scholar
Panjabi MM, White AA: Physical properties and functional biomechanics of the spine: the spinal cord. Clinical Biomechanics of the Spine. Edited by: White AA III, Panjabi MM. 1996, Philadelphia: J.B. Lippincott, 67-71. 2
Google Scholar
Kawahara N, Baba H, Nagata S, Kikuchi Y, Tomita K, Nomura S, Yugami H: Experimental studies on the spinal cord evoked potentials in cervical spine distraction injuries. Spinal Cord Monitoring and Electrodiagnosis. Edited by: Shimoji K, Kurokawa T, Tamaki T, Willis WD Jr. 1991, Tokyo: Springer-Verlag, 107-115.
Chapter
Google Scholar
Bilston LE, Thibault LE: The mechanical properties of the human cervical spinal cord in vitro. Ann Biomed Eng. 1996, 24: 67-74. 10.1007/BF02770996.
Article
CAS
PubMed
Google Scholar
Shimizu K, Nakamura M, Nishikawa Y, Nishikawa Y, Hijikata S, Chiba K, Toyama Y: Spinal kyphosis causes demyelination and neuronal loss in the spinal cord: a new model of kyphotic deformity using juvenile Japanese small game fowls. Spine. 2005, 30: 2388-2392. 10.1097/01.brs.0000184378.67465.5c.
Article
PubMed
Google Scholar
Gilbert JA, Weinhold PS, Banes AJ, Link GW, Jones GL: Strain profiles for circular cell culture plates containing flexible surfaces employed to mechanically deform cells in vitro. J Biomech. 1994, 27: 1169-1177. 10.1016/0021-9290(94)90057-4.
Article
CAS
PubMed
Google Scholar
Matsumoto T, Kawakami M, Kuribayashi K, Takenaka T, Tamaki T: Cyclic mechanical stretch stress increases the growth rate and collagen synthesis of nucleus pulposus cells in vitro. Spine. 1999, 24: 315-319. 10.1097/00007632-199902150-00002.
Article
CAS
PubMed
Google Scholar
Nakatani T, Marui T, Hirota T, Doita M, Nishida K, Kurosaka M: Mechanical stretching force promotes collagen synthesis by cultured cells from human ligamentum flavum via transforming growth factor-β1. J Orthop Res. 2002, 20: 1380-1386. 10.1016/S0736-0266(02)00046-3.
Article
CAS
PubMed
Google Scholar
Uchida K, Nakajima H, Takamura T, Furukawa S, Kobayashi S, Yayama T, Baba H: Gene expression profiles of neurotrophic factors in rat cultured spinal cord cells under cyclic tensile stress. Spine. 2008, 33: 2596-2604. 10.1097/BRS.0b013e31818917af.
Article
PubMed
Google Scholar
Morrison B, Meaney DF, Margulies SS, McIntosh TK: Dynamic mechanical stretch of organotypic brain slice cultures induces differential genomic expression: relationship to mechanical parameters. J Biomech Eng. 2000, 122: 224-230. 10.1115/1.429650.
Article
PubMed
Google Scholar
Haq F, Keith C, Zhang G: Neurite development in PC12 cells on flexible micro-textured substrates under cyclic stretch. Biotechnol Prog. 2006, 22: 133-140. 10.1021/bp0501625.
Article
CAS
PubMed
Google Scholar
Morrison B, Cater HL, Wang CC, Thomas FC, Hung CT, Ateshian GA, Sundstrom LE: A tissue level tolerance criterion for living brain developed with an in vitro model of traumatic mechanical loading. Stapp Car Crash J. 2003, 47: 93-105.
PubMed
Google Scholar
Tanoue M, Yamaga M, Ide J, Takagi K: Acute stretching of peripheral nerves inhibits retrograde axonal transport. J Hand Surg [Br]. 1996, 21: 358-363.
Article
CAS
Google Scholar
Banes AJ, Tsuzaki M, Yamamoto J, Fischer T, Brigman B, Brown T, Miller L: Mechanoreception at the cellular level; The detection, interpretation, and the diversity of responses to mechanical signals. Biochem Cell Biology. 1995, 73: 349-365. 10.1139/o95-043.
Article
CAS
Google Scholar
Guharay F, Sachs F: Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol. 1984, 352: 685-701.
Article
PubMed Central
CAS
PubMed
Google Scholar
Burridge K, Fath K, Kelly T, Nuckolls G, Turner C: Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Ann Rev Cell Biol. 1988, 4: 487-525.
Article
CAS
PubMed
Google Scholar
Clark EA, Brugge JS: Integrins and signal transduction pathways: the road taken. Science. 1995, 268: 233-239. 10.1126/science.7716514.
Article
CAS
PubMed
Google Scholar
Shyy JY, Chien S: Role of integrins in cellular responses to mechanical stress and adhesion. Curr Opin Cell Biol. 1997, 9: 707-713. 10.1016/S0955-0674(97)80125-1.
Article
CAS
PubMed
Google Scholar
Li C, Hu Y, Mayr M, Xu Q: Cyclic strain stress-induced mitogen-activated protein kinase (MAPK) phosphatase 1 expression in vascular smooth muscle cells is regulated by Ras/Rac-MAPK pathways. J Biol Chem. 1999, 274: 25273-25280. 10.1074/jbc.274.36.25273.
Article
CAS
PubMed
Google Scholar
Li C, Xu Q: Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell Signal. 2000, 12: 435-445. 10.1016/S0898-6568(00)00096-6.
Article
CAS
PubMed
Google Scholar
Copland IB, Post M: Stretch-activated signaling pathways responsible for early response gene expression in fetal lung epithelial cells. J Cell Physiol. 2007, 210: 133-143. 10.1002/jcp.20840.
Article
CAS
PubMed
Google Scholar
Resnick N, Collins T, Atkinson W, Bonthron DT, Dewey CF, Gimbrone MA: Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element. Proc Natl Acad Sci USA. 1993, 90: 4591-4595. 10.1073/pnas.90.10.4591.
Article
PubMed Central
CAS
PubMed
Google Scholar
Davis RJ: The mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1993, 268: 14553-14556.
CAS
PubMed
Google Scholar
Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, Collins PJ, de Longueville F, Kawasaki ES, Lee KY, Luo Y, Sun YA, Willey JC, Setterquist RA, Fischer GM, Tong W, Dragan YP, Dix DJ, Frueh FW, Goodsaid FM, Herman D, Jensen RV, Johnson CD, Lobenhofer EK, Puri RK, Schrf U, Thierry-Mieg J, Wang C, Wilson M, Wolber PK, Zhang L, Amur S, Bao W, Barbacioru CC, Lucas AB, Bertholet V, Boysen C, Bromley B, Brown D, Brunner A, Canales R, Cao XM, Cebula TA, Chen JJ, Cheng J, Chu TM, Chudin E, Corson J, Corton JC, Croner LJ, Davies C, Davison TS, Delenstarr G, Deng X, Dorris D, Eklund AC, Fan XH, Fang H, Fulmer-Smentek S, Fuscoe JC, Gallagher K, Ge W, Guo L, Guo X, Hager J, Haje PK, Han J, Han T, Harbottle HC, Harris SC, Hatchwell E, Hauser CA, Hester S, Hong H, Hurban P, Jackson SA, Ji H, Knight CR, Kuo WP, LeClerc JE, Levy S, Li QZ, Liu C, Liu Y, Lombardi MJ, Ma Y, Magnuson SR, Maqsodi B, McDaniel T, Mei N, Myklebost O, Ning B, Novoradovskaya N, Orr MS, Osborn TW, Papallo A, Patterson TA, Perkins RG, Peters EH, Peterson R, Philips KL, Pine PS, Pusztai L, Qian F, Ren H, Rosen M, Rosenzweig BA, Samaha RR, Schena M, Schroth GP, Shchegrova S, Smith DD, Staedtler F, Su Z, Sun H, Szallasi Z, Tezak Z, Thierry-Mieg D, Thompson KL, Tikhonova I, Turpaz Y, Vallanat B, Van C, Walker SJ, Wang SJ, Wang Y, Wolfinger R, Wong A, Wu J, Xiao C, Xie Q, Xu J, Yang W, Zhang L, Zhong S, Zong Y, Slikker W: The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006, 24: 1151-1161. 10.1038/nbt1239.
Article
CAS
PubMed
Google Scholar
Takeno K, Kobayashi S, Negoro K, Uchida K, Miyazaki T, Yayama T, Shimada S, Baba H: Physical limitations to tissue engineering of intervertebral disc cells: effect of extracellular osmotic change on glycosaminoglycan production and cell metabolism. Laboratory investigation. J Neurosurg Spine. 2007, 7: 637-644. 10.3171/SPI-07/12/637.
Article
PubMed
Google Scholar
Vaughan PJ, Pike CJ, Cotman CW, Cunningham DD: Thrombin receptor activation protects neurons and astrocytes from cell death produced by environmental insults. J Neurosci. 1995, 15: 5389-5401.
CAS
PubMed
Google Scholar