Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007;3:186–91.
Article
PubMed
Google Scholar
Murphy MP, LeVine H. Alzheimer’s disease and the amyloid-β peptide. J Alzheimers Dis. 2010;19:311–23.
Article
PubMed
PubMed Central
Google Scholar
Kumar S, Chowdhury S, Kumar S. In silico repurposing of antipsychotic drugs for Alzheimer’s disease. BMC Neurosci. 2017. https://doi.org/10.1186/s12868-017-0394-8.
Article
PubMed Central
PubMed
Google Scholar
Basile L. Virtual screening in the search of new and potent anti-alzheimer agents. In: Roy K, editor. Computational modeling of drugs against Alzheimer’s disease. New York, NY: Springer New York; 2018. p. 107–37. http://link.springer.com/10.1007/978-1-4939-7404-7_4. Accessed 25 Aug 2018.
Google Scholar
Kalaria RN, Galloway PG, Perry G. Widespread serum amyloid P immunoreactivity in cortical amyloid deposits and the neurofibrillary pathology of Alzheimer’s disease and other degenerative disorders. Neuropathol Appl Neurobiol. 1991;17:189–201.
Article
CAS
PubMed
Google Scholar
Janelidze S, Zetterberg H, Mattsson N, Palmqvist S, Vanderstichele H, Lindberg O, et al. CSF Ab42/Ab40 and Ab42/Ab38 ratios: better diagnostic markers of Alzheimer disease. Ann Clin Transl Neurol. 2016;3:154–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu L, Guo Z. Alzheimer’s Aβ42 and Aβ40 peptides form interlaced amyloid fibrils. J Neurochem. 2013;126:305–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coyle JT, Price DL, DeLong MR. Alzheimer’s disease: a disorder of cortical cholinergic innervation. Am Assoc Adv Sci. 1983;219:1184–90.
CAS
Google Scholar
García-Ayllón M-S. Revisiting the role of acetylcholinesterase in Alzheimer’s disease: cross-talk with P-tau and β-amyloid. Front Mol Neurosci. 2011. https://doi.org/10.3389/fnmol.2011.00022.
Article
PubMed Central
PubMed
Google Scholar
Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Res Int. 2016;4:519–22.
CAS
Google Scholar
Son SY, Tsukihara T, Ma J, Kondou Y, Yoshimura M, Yamashita E. Structure of human monoamine oxidase A at 2.2-Å resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad. 2008;105:5739–44.
Article
CAS
Google Scholar
Butterfield DA, Pocernich CB. The glutamatergic system and Alzheimer’s disease: therapeutic implications. CNS Drugs. 2003;17:641–52.
Article
CAS
PubMed
Google Scholar
Parsons CG, Danysz W, Dekundy A, Pulte I. Memantine and cholinesterase inhibitors: complementary mechanisms in the treatment of Alzheimer’s disease. Neurotox Res. 2013;24:358–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Li P, Feng J, Wu M. Dysfunction of NMDA receptors in Alzheimer’s disease. Neurol Sci. 2016;37:1039–47.
Article
PubMed
PubMed Central
Google Scholar
Goodsell DS, Morris GM, Olson AJ. Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit. 1996;9:1–5.
Article
CAS
PubMed
Google Scholar
Baig MH, Ahmad K, Roy S, Ashraf JM, Adil M, Siddiqui MH, et al. Computer aided drug design: success and limitations. Curr Pharm Des. 2016;22:572–81.
Article
CAS
PubMed
Google Scholar
Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, et al. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem. 2012;55:10282–6.
Article
CAS
PubMed
Google Scholar
Mirsafian H, Mat Ripen A, Merican AF, Bin Mohamad S. Amino acid sequence and structural comparison of BACE1 and BACE2 using evolutionary trace method. Sci World J. 2014;2014:482463.
Google Scholar
De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A. Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci U S A. 2005;102:12684–9.
Article
PubMed
PubMed Central
Google Scholar
Hedegaard M, Hansen KB, Andersen KT, Bräuner-Osborne H, Traynelis SF. Molecular pharmacology of human NMDA receptors. Neurochem Int. 2012;61:601–9.
Article
CAS
PubMed
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.
Article
CAS
PubMed
Google Scholar
Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M. Epik: a software program for pK(a) prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des. 2007;21:681–91.
Article
CAS
PubMed
Google Scholar
Kumar A, Bora U. In silico inhibition studies of NF-κB p50 subunit by curcumin and its natural derivatives. Med Chem Res. 2012;21:3281–7.
Article
CAS
Google Scholar
Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol Clifton NJ. 2015;1263:243–50.
Article
CAS
Google Scholar
Sander T, Freyss J, von Korff M, Rufener C. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model. 2015;55:460–73.
Article
CAS
PubMed
Google Scholar
Backman TWH, Cao Y, Girke T. ChemMine tools: an online service for analyzing and clustering small molecules. Nucleic Acids Res. 2011;39:W486–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017. https://doi.org/10.1038/srep42717.
Article
PubMed Central
PubMed
Google Scholar
Goodsell David S, Morris Garrett M, Olson Arthur J. Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit. 1996;9:1–5.
Article
CAS
PubMed
Google Scholar
Merk D, Grisoni F, Friedrich L, Gelzinyte E, Schneider G. Scaffold hopping from synthetic RXR modulators by virtual screening and de novo design. MedChemComm. 2018;9:1289–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roy S, Kumar A, Baig MH, Masařík M, Provazník I. Virtual screening, ADMET profiling, molecular docking and dynamics approaches to search for potent selective natural molecules based inhibitors against metallothionein-III to study Alzheimer’s disease. Methods San Diego Calif. 2015;83:105–10.
Article
CAS
Google Scholar
Manoharan P, Ghoshal N. Fragment-based virtual screening approach and molecular dynamics simulation studies for identification of BACE1 inhibitor leads. J Biomol Struct Dyn. 2018;36:1878–92.
Article
CAS
PubMed
Google Scholar
Chirapu SR, Pachaiyappan B, Nural HF, Cheng X, Yuan H, Lankin DC, et al. Molecular modeling, synthesis, and activity studies of novel biaryl and fused-ring BACE1 inhibitors. Bioorg Med Chem Lett. 2009;19:264–74.
Article
CAS
PubMed
Google Scholar
Hevener KE, Zhao W, Ball DM, Babaoglu K, Qi J, White SW, et al. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model. 2009;49:444–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baig MH, Rizvi SMD, Shakil S, Kamal MA, Khan S. A neuroinformatics study describing molecular interaction of Cisplatin with acetylcholinesterase: a plausible cause for anticancer drug induced neurotoxicity. CNS Neurol Disord Drug Targets. 2014;13:265–70.
Article
CAS
PubMed
Google Scholar
Johnson G, Moore SW. The peripheral anionic site of acetylcholinesterase: structure, functions and potential role in rational drug design. Curr Pharm Des. 2006;12:217–25.
Article
CAS
PubMed
Google Scholar
Nagatsu T. Progress in monoamine oxidase (MAO) research in relation to genetic engineering. Neurotoxicology. 2004;25:11–20.
Article
CAS
PubMed
Google Scholar
Geha RM, Chen K, Wouters J, Ooms F, Shih JC. Analysis of conserved active site residues in monoamine oxidase A and B and their three-dimensional molecular modeling. J Biol Chem. 2002;277:17209–16.
Article
CAS
PubMed
Google Scholar
Edmondson DE, Binda C, Wang J, Upadhyay AK, Mattevi A. Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases. Biochemistry (Mosc). 2009;48:4220–30.
Article
CAS
Google Scholar
John V. Human β-secretase (BACE) and BACE Inhibitors: progress Report. Curr Top Med Chem. 2006;6:569–78.
Article
CAS
PubMed
Google Scholar
May PC, Willis BA, Lowe SL, Dean RA, Monk SA, Cocke PJ, et al. The potent BACE1 Inhibitor LY2886721 elicits robust central A pharmacodynamic responses in mice, dogs, and humans. J Neurosci. 2015;35:1199–210.
Article
PubMed
PubMed Central
Google Scholar
Furukawa H, Gouaux E. Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J. 2003;22:2873–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.
Article
PubMed
PubMed Central
Google Scholar