Noelker C, Bacher M, Gocke P, Wei X, Klockgether T, Du Y, Dodel R: The flavanoide caffeic acid phenethyl ester blocks 6-hydroxydopamine-induced neurotoxicity. Neuroscience letters. 2005, 383 (1–2): 39-43. 10.1016/j.neulet.2005.04.023.
CAS
PubMed
Google Scholar
Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM: Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol. 2001, 65 (2): 135-172. 10.1016/S0301-0082(01)00003-X.
CAS
PubMed
Google Scholar
Fornstedt B, Rosengren E, Carlsson A: Occurrence and distribution of 5-S-cysteinyl derivatives of dopamine, dopa and dopac in the brains of eight mammalian species. Neuropharmacology. 1986, 25 (4): 451-454. 10.1016/0028-3908(86)90242-X.
CAS
PubMed
Google Scholar
Maruyama W, Youdim MB, Naoi M: Antiapoptotic properties of rasagiline, N-propargylamine-1(R)-aminoindan, and its optical (S)-isomer, TV1022. Annals of the New York Academy of Sciences. 2001, 939: 320-329.
CAS
PubMed
Google Scholar
Nie G, Jin C, Cao Y, Shen S, Zhao B: Distinct effects of tea catechins on 6-hydroxydopamine-induced apoptosis in PC12 cells. Archives of biochemistry and biophysics. 2002, 397 (1): 84-90. 10.1006/abbi.2001.2636.
CAS
PubMed
Google Scholar
Yasuhara T, Shingo T, Date I: The potential role of vascular endothelial growth factor in the central nervous system. Reviews in the neurosciences. 2004, 15 (4): 293-307.
CAS
PubMed
Google Scholar
Borlongan CV, Sanberg PR: Elevated body swing test: a new behavioral parameter for rats with 6-hydroxydopamine-induced hemiparkinsonism. J Neurosci. 1995, 15 (7 Pt 2): 5372-5378.
CAS
PubMed
Google Scholar
Thakar JH, Hassan MN: Effects of 6-hydroxydopamine on oxidative phosphorylation of mitochondria from rat striatum, cortex, and liver. Can J Physiol Pharmacol. 1988, 66 (4): 376-379.
CAS
PubMed
Google Scholar
Galindo MF, Jordan J, Gonzalez-Garcia C, Cena V: Chromaffin cell death induced by 6-hydroxydopamine is independent of mitochondrial swelling and caspase activation. Journal of neurochemistry. 2003, 84 (5): 1066-1073. 10.1046/j.1471-4159.2003.01592.x.
CAS
PubMed
Google Scholar
Kawai H, Nakai H, Suga M, Yuki S, Watanabe T, Saito KI: Effects of a novel free radical scavenger, MCl-186, on ischemic brain damage in the rat distal middle cerebral artery occlusion model. J Pharmacol Exp Ther. 1997, 281 (2): 921-927.
CAS
PubMed
Google Scholar
Shichinohe H, Kuroda S, Yasuda H, Ishikawa T, Iwai M, Horiuchi M, Iwasaki Y: Neuroprotective effects of the free radical scavenger Edaravone (MCI-186) in mice permanent focal brain ischemia. Brain research. 2004, 1029 (2): 200-206. 10.1016/j.brainres.2004.09.055.
CAS
PubMed
Google Scholar
Bates B, Hirt L, Thomas SS, Akbarian S, Le D, Amin-Hanjani S, Whalen M, Jaenisch R, Moskowitz MA: Neurotrophin-3 promotes cell death induced in cerebral ischemia, oxygen-glucose deprivation, and oxidative stress: possible involvement of oxygen free radicals. Neurobiology of disease. 2002, 9 (1): 24-37. 10.1006/nbdi.2001.0458.
CAS
PubMed
Google Scholar
Dohi K, Satoh K, Nakamachi T, Yofu S, Hiratsuka K, Nakamura S, Ohtaki H, Yoshikawa T, Shioda S, Aruga T: Does edaravone (MCI-186) act as an antioxidant and a neuroprotector in experimental traumatic brain injury?. Antioxidants & redox signaling. 2007, 9 (2): 281-287. 10.1089/ars.2007.9.281.
CAS
Google Scholar
Takahashi G, Sakurai M, Abe K, Itoyama Y, Tabayashi K: MCI-186 reduces oxidative cellular damage and increases DNA repair function in the rabbit spinal cord after transient ischemia. The Annals of thoracic surgery. 2004, 78 (2): 602-607. 10.1016/j.athoracsur.2004.02.133.
PubMed
Google Scholar
Banno M, Mizuno T, Kato H, Zhang G, Kawanokuchi J, Wang J, Kuno R, Jin S, Takeuchi H, Suzumura A: The radical scavenger edaravone prevents oxidative neurotoxicity induced by peroxynitrite and activated microglia. Neuropharmacology. 2005, 48 (2): 283-290. 10.1016/j.neuropharm.2004.10.002.
CAS
PubMed
Google Scholar
Yasuhara T, Shingo T, Kobayashi K, Takeuchi A, Yano A, Muraoka K, Matsui T, Miyoshi Y, Hamada H, Date I: Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson's disease. The European journal of neuroscience. 2004, 19 (6): 1494-1504. 10.1111/j.1460-9568.2004.03254.x.
PubMed
Google Scholar
Liu J, Narasimhan P, Lee YS, Song YS, Endo H, Yu F, Chan PH: Mild hypoxia promotes survival and proliferation of SOD2-deficient astrocytes via c-Myc activation. J Neurosci. 2006, 26 (16): 4329-4337. 10.1523/JNEUROSCI.0382-06.2006.
CAS
PubMed
Google Scholar
Paxinos GWG: The Rat Brain in Stereotaxic Coordinates. 1998, San Diego: Academic Press, 4
Google Scholar
Date I, Felten SY, Olschowka JA, Felten DL: Limited recovery of striatal dopaminergic fibers by adrenal medullary grafts in MPTP-treated aging mice. Experimental neurology. 1990, 107 (3): 197-207. 10.1016/0014-4886(90)90136-G.
CAS
PubMed
Google Scholar
Rajesh KG, Sasaguri S, Suzuki R, Maeda H: Antioxidant MCI-186 inhibits mitochondrial permeability transition pore and upregulates Bcl-2 expression. American journal of physiology. 2003, 285 (5): H2171-2178.
CAS
PubMed
Google Scholar
Takayasu Y, Nakaki J, Kawasaki T, Koda K, Ago Y, Baba A, Matsuda T: Edaravone, a radical scavenger, inhibits mitochondrial permeability transition pore in rat brain. Journal of pharmacological sciences. 2007, 103 (4): 434-437. 10.1254/jphs.SC0070014.
CAS
PubMed
Google Scholar
Xiao B, Bi FF, Hu YQ, Tian FF, Wu ZG, Mujlli HM, Ding L, Zhou XF: Edaravone neuroprotection effected by suppressing the gene expression of the Fas signal pathway following transient focal ischemia in rats. Neurotox Res. 2007, 12 (3): 155-162.
CAS
PubMed
Google Scholar
Qi X, Okuma Y, Hosoi T, Nomura Y: Edaravone protects against hypoxia/ischemia-induced endoplasmic reticulum dysfunction. The Journal of pharmacology and experimental therapeutics. 2004, 311 (1): 388-393. 10.1124/jpet.104.069088.
CAS
PubMed
Google Scholar
Kawasaki T, Kitao T, Nakagawa K, Fujisaki H, Takegawa Y, Koda K, Ago Y, Baba A, Matsuda T: Nitric oxide-induced apoptosis in cultured rat astrocytes: protection by edaravone, a radical scavenger. Glia. 2007, 55 (13): 1325-1333. 10.1002/glia.20541.
PubMed
Google Scholar
Tsao CW, Cheng JT, Lin YS: Down-regulation of Bcl-2, activation of caspases, and involvement of reactive oxygen species in 6-hydroxydopamine-induced thymocyte apoptosis. Neuroimmunomodulation. 2002, 10 (6): 328-336. 10.1159/000071473.
CAS
PubMed
Google Scholar
Kawasaki T, Ishihara K, Ago Y, Baba A, Matsuda T: Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a radical scavenger, prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in the substantia nigra but not the striatum. The Journal of pharmacology and experimental therapeutics. 2007, 322 (1): 274-281. 10.1124/jpet.106.119206.
CAS
PubMed
Google Scholar
Abe M, Kaizu K, Matsumoto K: A case report of acute renal failure and fulminant hepatitis associated with edaravone administration in a cerebral infarction patient. Ther Apher Dial. 2007, 11 (3): 235-240. 10.1111/j.1744-9987.2007.00480.x.
PubMed
Google Scholar
Kawasaki T, Ishihara K, Ago Y, Nakamura S, Itoh S, Baba A, Matsuda T: Protective effect of the radical scavenger edaravone against methamphetamine-induced dopaminergic neurotoxicity in mouse striatum. European journal of pharmacology. 2006, 542 (1–3): 92-99. 10.1016/j.ejphar.2006.05.012.
CAS
PubMed
Google Scholar
Akiyama Y, Miwa S: Improvement of postischemic dopaminergic dysfunction by edaravone, a free radical scavenger. Journal of pharmacological sciences. 2007, 104 (1): 99-102. 10.1254/jphs.SC0060259.
CAS
PubMed
Google Scholar
Kumar R, Lozano AM, Kim YJ, Hutchison WD, Sime E, Halket E, Lang AE: Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson's disease. Neurology. 1998, 51 (3): 850-855.
CAS
PubMed
Google Scholar
Patel NK, Bunnage M, Plaha P, Svendsen CN, Heywood P, Gill SS: Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol. 2005, 57 (2): 298-302. 10.1002/ana.20374.
CAS
PubMed
Google Scholar
Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, et al: Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med. 2001, 344 (10): 710-719. 10.1056/NEJM200103083441002.
CAS
PubMed
Google Scholar
Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, et al: A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol. 2003, 54 (3): 403-414. 10.1002/ana.10720.
PubMed
Google Scholar
Borlongan CV, Sanberg PR, Freeman TB: Neural transplantation for neurodegenerative disorders. Lancet. 1999, 353 (Suppl 1): SI29-30.
PubMed
Google Scholar
Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H, et al: Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. The Journal of clinical investigation. 2004, 113 (12): 1701-1710.
PubMed Central
CAS
PubMed
Google Scholar
Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y, Fukuda H, Okamoto Y, Koyanagi M, Ideguchi M, et al: Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. The Journal of clinical investigation. 2005, 115 (1): 102-109.
PubMed Central
CAS
PubMed
Google Scholar
Yasuhara T, Matsukawa N, Hara K, Yu G, Xu L, Maki M, Kim SU, Borlongan CV: Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson's disease. J Neurosci. 2006, 26 (48): 12497-12511. 10.1523/JNEUROSCI.3719-06.2006.
CAS
PubMed
Google Scholar
Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126 (4): 663-676. 10.1016/j.cell.2006.07.024.
CAS
PubMed
Google Scholar
Redmond DE, Bjugstad KB, Teng YD, Ourednik V, Ourednik J, Wakeman DR, Parsons XH, Gonzalez R, Blanchard BC, Kim SU, et al: Behavioral improvement in a primate Parkinson's model is associated with multiple homeostatic effects of human neural stem cells. Proceedings of the National Academy of Sciences of the United States of America. 2007, 104 (29): 12175-12180. 10.1073/pnas.0704091104.
PubMed Central
CAS
PubMed
Google Scholar
Muraoka K, Shingo T, Yasuhara T, Kameda M, Yuen WJ, Uozumi T, Matsui T, Miyoshi Y, Date I: Comparison of the therapeutic potential of adult and embryonic neural precursor cells in a rat model of Parkinson disease. Journal of neurosurgery. 2008, 108 (1): 149-159. 10.3171/JNS/2008/108/01/0149.
PubMed
Google Scholar
Zhang W, Sato K, Hayashi T, Omori N, Nagano I, Kato S, Horiuchi S, Abe K: Extension of ischemic therapeutic time window by a free radical scavenger, Edaravone, reperfused with tPA in rat brain. Neurological research. 2004, 26 (3): 342-348. 10.1179/016164104225014058.
CAS
PubMed
Google Scholar
Nelson SK, Bose S, Rizeq M, McCord JM: Oxidative stress in organ preservation: a multifaceted approach to cardioplegia. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2005, 59 (4): 149-157. 10.1016/j.biopha.2005.03.007.
CAS
Google Scholar