Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, Fenart L: Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov. 2007, 6 (8): 650-661.
CAS
PubMed
Google Scholar
Toth A, Veszelka S, Nakagawa S, Niwa M, Deli MA: Patented in vitro blood–brain barrier models in CNS drug discovery. Recent Pat CNS Drug Discov. 2011, 6 (2): 107-118.
CAS
PubMed
Google Scholar
Zlokovic BV: The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008, 57 (2): 178-201.
CAS
PubMed
Google Scholar
Palmer AM: The role of the blood-CNS barrier in CNS disorders and their treatment. Neurobiol Dis. 2010, 37 (1): 3-12.
CAS
PubMed
Google Scholar
Deli MA, Abraham CS, Kataoka Y, Niwa M: Permeability studies on in vitro blood–brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol. 2005, 25 (1): 59-127.
PubMed
Google Scholar
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ: Structure and function of the blood–brain barrier. Neurobiol Dis. 2010, 37 (1): 13-25.
CAS
PubMed
Google Scholar
Abbott NJ, Ronnback L, Hansson E: Astrocyte-endothelial interactions at the blood–brain barrier. Nature reviews. 2006, 7 (1): 41-53.
CAS
PubMed
Google Scholar
Daneman R, Zhou L, Kebede AA, Barres BA: Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010, 468 (7323): 562-566.
PubMed Central
CAS
PubMed
Google Scholar
Vandenhaute E, Dehouck L, Boucau MC, Sevin E, Uzbekov R, Tardivel M, Gosselet F, Fenart L, Cecchelli R, Dehouck MP: Modelling the neurovascular unit and the blood–brain barrier with the unique function of pericytes. Curr Neurovasc Res. 2011, 8 (4): 258-269.
CAS
PubMed
Google Scholar
Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M: Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol. 2007, 27 (6): 687-694.
CAS
PubMed
Google Scholar
Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M: A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009, 54 (3–4): 253-263.
CAS
PubMed
Google Scholar
Thanabalasundaram G, Schneidewind J, Pieper C, Galla HJ: The impact of pericytes on the blood–brain barrier integrity depends critically on the pericyte differentiation stage. Int J Biochem Cell Biol. 2011, 43 (9): 1284-1293.
CAS
PubMed
Google Scholar
Biegel D, Spencer DD, Pachter JS: Isolation and culture of human brain microvessel endothelial cells for the study of blood–brain barrier properties in vitro. Brain Res. 1995, 692 (1–2): 183-189.
CAS
PubMed
Google Scholar
Bernas MJ, Cardoso FL, Daley SK, Weinand ME, Campos AR, Ferreira AJ, Hoying JB, Witte MH, Brites D, Persidsky Y, et al: Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood–brain barrier. Nat Protoc. 2010, 5 (7): 1265-1272.
PubMed Central
CAS
PubMed
Google Scholar
Cioni C, Turlizzi E, Zanelli U, Oliveri G, Annunziata P: Expression of tight junction and drug efflux transporter proteins in an in vitro model of human blood–brain barrier. Front Psychiatry. 2012, 3: 47.
PubMed Central
CAS
PubMed
Google Scholar
Lacombe O, Videau O, Chevillon D, Guyot AC, Contreras C, Blondel S, Nicolas L, Ghettas A, Benech H, Thevenot E, et al: In vitro primary human and animal cell-based blood–brain barrier models as a screening tool in drug discovery. Mol Pharm. 2011, 8 (3): 651-663.
CAS
PubMed
Google Scholar
Mabondzo A, Bottlaender M, Guyot AC, Tsaouin K, Deverre JR, Balimane PV: Validation of in vitro cell-based human blood–brain barrier model using clinical positron emission tomography radioligands to predict in vivo human brain penetration. Mol Pharm. 2010, 7 (5): 1805-1815.
CAS
PubMed
Google Scholar
Megard I, Garrigues A, Orlowski S, Jorajuria S, Clayette P, Ezan E, Mabondzo A: A co-culture-based model of human blood–brain barrier: application to active transport of indinavir and in vivo-in vitro correlation. Brain Res. 2002, 927 (2): 153-167.
CAS
PubMed
Google Scholar
Dorovini-Zis K, Prameya R, Bowman PD: Culture and characterization of microvascular endothelial cells derived from human brain. Lab Invest. 1991, 64 (3): 425-436.
CAS
PubMed
Google Scholar
Song L, Pachter JS: Culture of murine brain microvascular endothelial cells that maintain expression and cytoskeletal association of tight junction-associated proteins. In Vitro Cell Dev Biol. 2003, 39 (7): 313-320.
CAS
Google Scholar
Schrot S, Weidenfeller C, Schaffer TE, Robenek H, Galla HJ: Influence of hydrocortisone on the mechanical properties of the cerebral endothelium in vitro. Biophys J. 2005, 89 (6): 3904-3910.
PubMed Central
CAS
PubMed
Google Scholar
Weidenfeller C, Schrot S, Zozulya A, Galla HJ: Murine brain capillary endothelial cells exhibit improved barrier properties under the influence of hydrocortisone. Brain Res. 2005, 1053 (1–2): 162-174.
CAS
PubMed
Google Scholar
Wuest DM, Lee KH: Optimization of endothelial cell growth in a murine in vitro blood–brain barrier model. Biotechnol J. 2012, 7 (3): 409-417.
PubMed Central
CAS
PubMed
Google Scholar
Coisne C, Dehouck L, Faveeuw C, Delplace Y, Miller F, Landry C, Morissette C, Fenart L, Cecchelli R, Tremblay P, et al: Mouse syngenic in vitro blood–brain barrier model: a new tool to examine inflammatory events in cerebral endothelium. Lab Invest. 2005, 85 (6): 734-746.
CAS
PubMed
Google Scholar
Shayan G, Choi YS, Shusta EV, Shuler ML, Lee KH: Murine in vitro model of the blood–brain barrier for evaluating drug transport. Eur J Pharm Sci. 2011, 42 (1–2): 148-155.
CAS
PubMed
Google Scholar
Forster C, Silwedel C, Golenhofen N, Burek M, Kietz S, Mankertz J, Drenckhahn D: Occludin as direct target for glucocorticoid-induced improvement of blood–brain barrier properties in a murine in vitro system. J Physiol. 2005, 565 (Pt 2): 475-486.
PubMed Central
PubMed
Google Scholar
Abbott NJ, Dolman DE, Drndarski S, Fredriksson SM: An improved in vitro blood–brain barrier model: rat brain endothelial cells co-cultured with astrocytes. Methods Mol Biol. 2012, 814: 415-430.
CAS
PubMed
Google Scholar
Abbott NJ, Hughes CC, Revest PA, Greenwood J: Development and characterisation of a rat brain capillary endothelial culture: towards an in vitro blood–brain barrier. J Cell Sci. 1992, 103 (Pt 1): 23-37.
CAS
PubMed
Google Scholar
Bowman PD, Betz AL, Ar D, Wolinsky JS, Penney JB, Shivers RR, Goldstein GW: Primary culture of capillary endothelium from rat brain. In Vitro. 1981, 17 (4): 353-362.
CAS
PubMed
Google Scholar
Calabria AR, Shusta EV: Blood–brain barrier genomics and proteomics: elucidating phenotype, identifying disease targets and enabling brain drug delivery. Drug Discov Today. 2006, 11 (17–18): 792-799.
CAS
PubMed
Google Scholar
Perriere N, Demeuse P, Garcia E, Regina A, Debray M, Andreux JP, Couvreur P, Scherrmann JM, Temsamani J, Couraud PO, et al: Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood–brain barrier-specific properties. J Neurochem. 2005, 93 (2): 279-289.
CAS
PubMed
Google Scholar
Szabo CA, Deli MA, Ngo TK, Joo F: Production of pure primary rat cerebral endothelial cell culture: a comparison of different methods. Neurobiology (Bp). 1997, 5 (1): 1-16.
CAS
Google Scholar
Kis B, Kaiya H, Nishi R, Deli MA, Abraham CS, Yanagita T, Isse T, Gotoh S, Kobayashi H, Wada A, et al: Cerebral endothelial cells are a major source of adrenomedullin. J Neuroendocrinol. 2002, 14 (4): 283-293.
CAS
PubMed
Google Scholar
Diglio CA, Grammas P, Giacomelli F, Wiener J: Primary culture of rat cerebral microvascular endothelial cells. Isolation, growth, and characterization. Lab Invest. 1982, 46 (6): 554-563.
CAS
PubMed
Google Scholar
Garcia-Garcia E, Gil S, Andrieux K, Desmaele D, Nicolas V, Taran F, Georgin D, Andreux JP, Roux F, Couvreur P: A relevant in vitro rat model for the evaluation of blood–brain barrier translocation of nanoparticles. Cell Mol Life Sci. 2005, 62 (12): 1400-1408.
PubMed Central
CAS
PubMed
Google Scholar
Audus KL, Borchardt RT: Characteristics of the large neutral amino acid transport system of bovine brain microvessel endothelial cell monolayers. J Neurochem. 1986, 47 (2): 484-488.
CAS
PubMed
Google Scholar
Audus KL, Borchardt RT: Bovine brain microvessel endothelial cell monolayers as a model system for the blood–brain barrier. Ann N Y Acad Sci. 1987, 507: 9-18.
CAS
PubMed
Google Scholar
Dorovini-Zis K, Bowman PD, Betz AL, Goldstein GW: Formation of a barrier by brain microvessel endothelial cells in culture. Fed Proc. 1987, 46 (8): 2521-2522.
CAS
PubMed
Google Scholar
Guillot FL, Audus KL, Raub TJ: Fluid-phase endocytosis by primary cultures of bovine brain microvessel endothelial cell monolayers. Microvasc Res. 1990, 39 (1): 1-14.
CAS
PubMed
Google Scholar
van Bree JB, de Boer AG, Danhof M, Ginsel LA, Breimer DD: Characterization of an "in vitro" blood–brain barrier: effects of molecular size and lipophilicity on cerebrovascular endothelial transport rates of drugs. J Pharmacol Exp Ther. 1988, 247 (3): 1233-1239.
CAS
PubMed
Google Scholar
Gaillard PJ, Voorwinden LH, Nielsen JL, Ivanov A, Atsumi R, Engman H, Ringbom C, de Boer AG, Breimer DD: Establishment and functional characterization of an in vitro model of the blood–brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur J Pharm Sci. 2001, 12 (3): 215-222.
CAS
PubMed
Google Scholar
Dehouck MP, Meresse S, Delorme P, Fruchart JC, Cecchelli R: An easier, reproducible, and mass-production method to study the blood–brain barrier in vitro. J Neurochem. 1990, 54 (5): 1798-1801.
CAS
PubMed
Google Scholar
Vandenhaute E, Sevin E, Hallier-Vanuxeem D, Dehouck MP, Cecchelli R: Case study: adapting in vitro blood–brain barrier models for use in early-stage drug discovery. Drug Discov Today. 2012, 17 (7–8): 285-290.
PubMed
Google Scholar
Skinner RA, Gibson RM, Rothwell NJ, Pinteaux E, Penny JI: Transport of interleukin-1 across cerebromicrovascular endothelial cells. Br J Pharmacol. 2009, 156 (7): 1115-1123.
PubMed Central
CAS
PubMed
Google Scholar
Franke H, Galla H, Beuckmann CT: Primary cultures of brain microvessel endothelial cells: a valid and flexible model to study drug transport through the blood–brain barrier in vitro. Brain Res Brain Res Protoc. 2000, 5 (3): 248-256.
CAS
PubMed
Google Scholar
Franke H, Galla HJ, Beuckmann CT: An improved low-permeability in vitro-model of the blood–brain barrier: transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res. 1999, 818 (1): 65-71.
CAS
PubMed
Google Scholar
Rauh J, Meyer J, Beuckmann C, Galla HJ: Development of an in vitro cell culture system to mimic the blood–brain barrier. Prog Brain Res. 1992, 91: 117-121.
CAS
PubMed
Google Scholar
Smith M, Omidi Y, Gumbleton M: Primary porcine brain microvascular endothelial cells: biochemical and functional characterisation as a model for drug transport and targeting. J Drug Target. 2007, 15 (4): 253-268.
CAS
PubMed
Google Scholar
Torok M, Huwyler J, Gutmann H, Fricker G, Drewe J: Modulation of transendothelial permeability and expression of ATP-binding cassette transporters in cultured brain capillary endothelial cells by astrocytic factors and cell-culture conditions. Exp Brain Res. 2003, 153 (3): 356-365.
PubMed
Google Scholar
Cohen-Kashi Malina K, Cooper I, Teichberg VI: Closing the gap between the in-vivo and in-vitro blood–brain barrier tightness. Brain Res. 2009, 1284: 12-21.
CAS
PubMed
Google Scholar
Patabendige A, Skinner RA, Abbott NJ: Establishment of a simplified in vitro porcine blood–brain barrier model with high transendothelial electrical resistance. Brain Res. 2012
Google Scholar
Nitz T, Eisenblatter T, Psathaki K, Galla HJ: Serum-derived factors weaken the barrier properties of cultured porcine brain capillary endothelial cells in vitro. Brain Res. 2003, 981 (1–2): 30-40.
CAS
PubMed
Google Scholar
Hoheisel D, Nitz T, Franke H, Wegener J, Hakvoort A, Tilling T, Galla HJ: Hydrocortisone reinforces the blood–brain barrier properties in a serum free cell culture system. Biochem Biophys Res Commun. 1998, 244 (1): 312-316.
CAS
PubMed
Google Scholar
Zhang Y, Li CS, Ye Y, Johnson K, Poe J, Johnson S, Bobrowski W, Garrido R, Madhu C: Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood–brain barrier permeability. Drug Metab Dispos. 2006, 34 (11): 1935-1943.
CAS
PubMed
Google Scholar
Ge S, Pachter JS: Isolation and culture of microvascular endothelial cells from murine spinal cord. J Neuroimmunol. 2006, 177 (1–2): 209-214.
CAS
PubMed
Google Scholar
Lippmann ES, Weidenfeller C, Svendsen CN, Shusta EV: Blood–brain barrier modeling with co-cultured neural progenitor cell-derived astrocytes and neurons. J Neurochem. 2011, 119 (3): 507-520.
PubMed Central
CAS
PubMed
Google Scholar
Weidenfeller C, Svendsen CN, Shusta EV: Differentiating embryonic neural progenitor cells induce blood–brain barrier properties. J Neurochem. 2007, 101 (2): 555-565.
PubMed Central
CAS
PubMed
Google Scholar
Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J, et al: A cell culture model of the blood–brain barrier. J Cell Biol. 1991, 115 (6): 1725-1735.
CAS
PubMed
Google Scholar
Beuckmann C, Hellwig S, Galla HJ: Induction of the blood/brain-barrier-associated enzyme alkaline phosphatase in endothelial cells from cerebral capillaries is mediated via cAMP. Eur J Biochem. 1995, 229 (3): 641-644.
CAS
PubMed
Google Scholar
Forster C, Waschke J, Burek M, Leers J, Drenckhahn D: Glucocorticoid effects on mouse microvascular endothelial barrier permeability are brain specific. J Physiol. 2006, 573 (Pt 2): 413-425.
PubMed Central
PubMed
Google Scholar
Calabria AR, Weidenfeller C, Jones AR, de Vries HE, Shusta EV: Puromycin-purified rat brain microvascular endothelial cell cultures exhibit improved barrier properties in response to glucocorticoid induction. J Neurochem. 2006, 97 (4): 922-933.
CAS
PubMed
Google Scholar
Sobue K, Yamamoto N, Yoneda K, Hodgson ME, Yamashiro K, Tsuruoka N, Tsuda T, Katsuya H, Miura Y, Asai K, et al: Induction of blood–brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res. 1999, 35 (2): 155-164.
CAS
PubMed
Google Scholar
Bendfeldt K, Radojevic V, Kapfhammer J, Nitsch C: Basic fibroblast growth factor modulates density of blood vessels and preserves tight junctions in organotypic cortical cultures of mice: a new in vitro model of the blood–brain barrier. J Neurosci. 2007, 27 (12): 3260-3267.
CAS
PubMed
Google Scholar
Helms HC, Waagepetersen HS, Nielsen CU, Brodin B: Paracellular tightness and claudin-5 expression is increased in the BCEC/astrocyte blood–brain barrier model by increasing media buffer capacity during growth. AAPS J. 2010, 12 (4): 759-770.
PubMed Central
CAS
PubMed
Google Scholar
Perriere N, Yousif S, Cazaubon S, Chaverot N, Bourasset F, Cisternino S, Decleves X, Hori S, Terasaki T, Deli M, et al: A functional in vitro model of rat blood–brain barrier for molecular analysis of efflux transporters. Brain Res. 2007, 1150: 1-13.
CAS
PubMed
Google Scholar
McCarthy KD, de Vellis J: Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980, 85 (3): 890-902.
CAS
PubMed
Google Scholar
Culot M, Lundquist S, Vanuxeem D, Nion S, Landry C, Delplace Y, Dehouck MP, Berezowski V, Fenart L, Cecchelli R: An in vitro blood–brain barrier model for high throughput (HTS) toxicological screening. Toxicol In Vitro. 2008, 22 (3): 799-811.
CAS
PubMed
Google Scholar
Siflinger-Birnboim A, Del Vecchio PJ, Cooper JA, Blumenstock FA, Shepard JM, Malik AB: Molecular sieving characteristics of the cultured endothelial monolayer. J Cell Physiol. 1987, 132 (1): 111-117.
CAS
PubMed
Google Scholar
Hayashi Y, Nomura M, Yamagishi S, Harada S, Yamashita J, Yamamoto H: Induction of various blood–brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia. 1997, 19 (1): 13-26.
CAS
PubMed
Google Scholar
Gaillard PJ, van der Sandt IC, Voorwinden LH, Vu D, Nielsen JL, de Boer AG, Breimer DD: Astrocytes increase the functional expression of P-glycoprotein in an in vitro model of the blood–brain barrier. Pharm Res. 2000, 17 (10): 1198-1205.
CAS
PubMed
Google Scholar
Ohtsuki S, Sato S, Yamaguchi H, Kamoi M, Asashima T, Terasaki T: Exogenous expression of claudin-5 induces barrier properties in cultured rat brain capillary endothelial cells. J Cell Physiol. 2007, 210 (1): 81-86.
CAS
PubMed
Google Scholar
Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S: Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J Cell Biol. 2003, 161 (3): 653-660.
PubMed Central
CAS
PubMed
Google Scholar
Cooper I, Cohen-Kashi-Malina K, Teichberg VI: Claudin-5 expression in in vitro models of the blood–brain barrier. Methods Mol Biol. 2011, 762: 347-354.
CAS
PubMed
Google Scholar
Gaillard PJ, de Boer AG: Relationship between permeability status of the blood–brain barrier and in vitro permeability coefficient of a drug. Eur J Pharm Sci. 2000, 12 (2): 95-102.
CAS
PubMed
Google Scholar
Neuhaus W, Plattner VE, Wirth M, Germann B, Lachmann B, Gabor F, Noe CR: Validation of in vitro cell culture models of the blood–brain barrier: tightness characterization of two promising cell lines. J Pharm Sci. 2008, 97 (12): 5158-5175.
CAS
PubMed
Google Scholar
Roux F, Couraud PO: Rat brain endothelial cell lines for the study of blood–brain barrier permeability and transport functions. Cell Mol Neurobiol. 2005, 25 (1): 41-58.
PubMed
Google Scholar
Garberg P, Ball M, Borg N, Cecchelli R, Fenart L, Hurst RD, Lindmark T, Mabondzo A, Nilsson JE, Raub TJ, et al: In vitro models for the blood–brain barrier. Toxicol In Vitro. 2005, 19 (3): 299-334.
CAS
PubMed
Google Scholar
Wilhelm I, Fazakas C, Krizbai IA: In vitro models of the blood–brain barrier. Acta Neurobiol Exp. 2011, 71 (1): 113-128.
Google Scholar
Shusta EV: Blood–brain barrier genomics, proteomics, and new transporter discovery. NeuroRx. 2005, 2 (1): 151-161.
PubMed Central
PubMed
Google Scholar
Murugesan N, Macdonald JA, Lu Q, Wu SL, Hancock WS, Pachter JS: Analysis of mouse brain microvascular endothelium using laser capture microdissection coupled with proteomics. Methods Mol Biol. 2011, 686: 297-311.
CAS
PubMed
Google Scholar
Pottiez G, Flahaut C, Cecchelli R, Karamanos Y: Understanding the blood–brain barrier using gene and protein expression profiling technologies. Brain Res Rev. 2009, 62 (1): 83-98.
CAS
PubMed
Google Scholar
Campos CR, Schroter C, Wang X, Miller DS: ABC transporter function and regulation at the blood-spinal cord barrier. J Cereb Blood Flow Metab. 2012, 32 (8): 1559-1566.
PubMed Central
CAS
PubMed
Google Scholar
Jablonski MR, Jacob DA, Campos C, Miller DS, Maragakis NJ, Pasinelli P, Trotti D: Selective increase of two ABC drug efflux transporters at the blood-spinal cord barrier suggests induced pharmacoresistance in ALS. Neurobiol Dis. 2012, 47 (2): 194-200.
PubMed Central
CAS
PubMed
Google Scholar
Fazakas C, Wilhelm I, Nagyoszi P, Farkas AE, Hasko J, Molnar J, Bauer H, Bauer HC, Ayaydin F, Dung NT, et al: Transmigration of melanoma cells through the blood–brain barrier: role of endothelial tight junctions and melanoma-released serine proteases. PLoS One. 2012, 6 (6): e20758.
Google Scholar
Bickel U: How to measure drug transport across the blood–brain barrier. NeuroRx. 2005, 2 (1): 15-26.
PubMed Central
PubMed
Google Scholar
Berezowski V, Landry C, Lundquist S, Dehouck L, Cecchelli R, Dehouck MP, Fenart L: Transport screening of drug cocktails through an in vitro blood–brain barrier: is it a good strategy for increasing the throughput of the discovery pipeline?. Pharm Res. 2004, 21 (5): 756-760.
CAS
PubMed
Google Scholar
Wager TT, Liras JL, Mente S, Trapa P: Strategies to minimize CNS toxicity: in vitro high-throughput assays and computational modeling. Expert Opin Drug Metab Toxicol. 2012, 8 (5): 531-542.
CAS
PubMed
Google Scholar
Ge S, Song L, Pachter JS: Where is the blood–brain barrier … really?. J Neurosci Res. 2005, 79 (4): 421-427.
CAS
PubMed
Google Scholar
Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M: The blood-spinal cord barrier: morphology and clinical implications. Ann Neurol. 2011, 70 (2): 194-206.
PubMed
Google Scholar
Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ: Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology. 1998, 37 (12): 1553-1561.
CAS
PubMed
Google Scholar
Pan W, Banks WA, Kastin AJ: Permeability of the blood–brain and blood-spinal cord barriers to interferons. J Neuroimmunol. 1997, 76 (1–2): 105-111.
CAS
PubMed
Google Scholar
Pan W, Banks WA, Kastin AJ: Permeability of the blood–brain barrier to neurotrophins. Brain Res. 1998, 788 (1–2): 87-94.
CAS
PubMed
Google Scholar
Pan W, Kastin AJ: Penetration of neurotrophins and cytokines across the blood–brain/blood-spinal cord barrier. Adv Drug Deliv Rev. 1999, 36 (2–3): 291-298.
CAS
PubMed
Google Scholar
Prockop LD, Naidu KA, Binard JE, Ransohoff J: Selective permeability of [3H]-D-mannitol and [14C]-carboxyl-inulin across the blood–brain barrier and blood-spinal cord barrier in the rabbit. J Spinal Cord Med. 1995, 18 (4): 221-226.
CAS
PubMed
Google Scholar
Banks WA, Kastin AJ, Ehrensing CA: Blood-borne interleukin-1 alpha is transported across the endothelial blood-spinal cord barrier of mice. J Physiol. 1994, 479 (Pt 2): 257-264.
PubMed Central
PubMed
Google Scholar
McLay RN, Kimura M, Banks WA, Kastin AJ: Granulocyte-macrophage colony-stimulating factor crosses the blood–brain and blood–spinal cord barriers. Brain. 1997, 120 (Pt 11): 2083-2091.
PubMed
Google Scholar
Seitz RJ, Heininger K, Schwendemann G, Toyka KV, Wechsler W: The mouse blood–brain barrier and blood-nerve barrier for IgG: a tracer study by use of the avidin-biotin system. Acta Neuropathol. 1985, 68 (1): 15-21.
CAS
PubMed
Google Scholar