Nässel DR, Winther AM: Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol. 2010, 92: 42-104. 10.1016/j.pneurobio.2010.04.010.
Article
PubMed
Google Scholar
Hauser F, Neupert S, Williamson M, Predel R, Tanaka Y, Grimmelikhuijzen CJ: Genomics and peptidomics of neuropeptides and protein hormones present in the parasitic wasp Nasonia vitripennis. J Proteome Res. 2010, 9: 5296-5310. 10.1021/pr100570j.
Article
CAS
PubMed
Google Scholar
Hauser F, Cazzamali G, Williamson M, Park Y, Li B, Tanaka Y, Predel R, Neupert S, Schachtner J, Verleyen P, Grimmelikhuijzen CJ: A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Front Neuroendocrinol. 2008, 29: 142-165. 10.1016/j.yfrne.2007.10.003.
Article
CAS
PubMed
Google Scholar
Gard AL, Lenz PH, Shaw JR, Christie AE: Identification of putative peptide paracrines/hormones in the water flea Daphnia pulex (Crustacea; Branchiopoda; Cladocera) using transcriptomics and immunohistochemistry. Gen Comp Endocrinol. 2009, 160: 271-287. 10.1016/j.ygcen.2008.12.014.
Article
CAS
PubMed
Google Scholar
Kreshchenko ND: Functions of flatworm neuropeptides NPF, GYIRF and FMRF in course of pharyngeal regeneration of anterior body fragments of planarian, Girardia tigrina. Acta Biol Hung. 2008, 59 (Suppl): 199-207.
Article
PubMed
Google Scholar
Hummon AB, Richmond TA, Verleyen P, Baggerman G, Huybrechts J, Ewing MA, Vierstraete E, Rodriguez-Zas SL, Schoofs L, Robinson GE, Sweedler JV: From the genome to the proteome: uncovering peptides in the Apis brain. Science. 2006, 314: 647-649. 10.1126/science.1124128.
Article
CAS
PubMed
Google Scholar
Clynen E, Husson SJ, Schoofs L: Identification of new members of the (short) neuropeptide F family in locusts and Caenorhabditis elegans. Ann N Y Acad Sci. 2009, 1163: 60-74. 10.1111/j.1749-6632.2008.03624.x.
Article
CAS
PubMed
Google Scholar
Vanden BJ: Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides. 2001, 22: 241-254. 10.1016/S0196-9781(00)00376-4.
Article
Google Scholar
Christie AE, Durkin CS, Hartline N, Ohno P, Lenz PH: Bioinformatic analyses of the publicly accessible crustacean expressed sequence tags (ESTs) reveal numerous novel neuropeptide-encoding precursor proteins, including ones from members of several little studied taxa. Gen Comp Endocrinol. 2010, 167: 164-178. 10.1016/j.ygcen.2010.01.005.
Article
CAS
PubMed
Google Scholar
Garczynski SF, Brown MR, Shen P, Murray TF, Crim JW: Characterization of a functional neuropeptide F receptor from Drosophila melanogaster. Peptides. 2002, 23: 773-780. 10.1016/S0196-9781(01)00647-7.
Article
CAS
PubMed
Google Scholar
Chen ME, Pietrantonio PV: The short neuropeptide F-like receptor from the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Arch Insect Biochem Physiol. 2006, 61: 195-208. 10.1002/arch.20103.
Article
CAS
PubMed
Google Scholar
Hauser F, Cazzamali G, Williamson M, Blenau W, Grimmelikhuijzen CJ: A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog Neurobiol. 2006, 80: 1-19. 10.1016/j.pneurobio.2006.07.005.
Article
CAS
PubMed
Google Scholar
Garczynski SF, Crim JW, Brown MR: Characterization of neuropeptide F and its receptor from the African malaria mosquito, Anopheles gambiae. Peptides. 2005, 26: 99-107. 10.1016/j.peptides.2004.07.014.
Article
CAS
PubMed
Google Scholar
Garczynski SF, Crim JW, Brown MR: Characterization and expression of the short neuropeptide F receptor in the African malaria mosquito, Anopheles gambiae. Peptides. 2007, 28: 109-118. 10.1016/j.peptides.2006.09.019.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gonzalez R, Orchard I: Characterization of neuropeptide F-like immunoreactivity in the blood-feeding hemipteran, Rhodnius prolixus. Peptides. 2008, 29: 545-558. 10.1016/j.peptides.2007.11.023.
Article
CAS
PubMed
Google Scholar
Kuo LE, Kitlinska JB, Tilan JU, Li L, Baker SB, Johnson MD, Lee EW, Burnett MS, Fricke ST, Kvetnansky R, Herzog H, Zukowska Z: Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med. 2007, 13: 803-811. 10.1038/nm1611.
Article
CAS
PubMed
Google Scholar
Dumont Y, Chabot JG, Quirion R: Receptor autoradiography as mean to explore the possible functional relevance of neuropeptides: focus on new agonists and antagonists to study natriuretic peptides, neuropeptide Y and calcitonin gene-related peptides. Peptides. 2004, 25: 365-391. 10.1016/j.peptides.2004.01.013.
Article
CAS
PubMed
Google Scholar
Hokfelt T, Stanic D, Sanford SD, Gatlin JC, Nilsson I, Paratcha G, Ledda F, Fetissov S, Lindfors C, Herzog H, Johansen JE, Ubink R, Pfenninger KH: NPY and its involvement in axon guidance, neurogenesis, and feeding. Nutrition. 2008, 24: 860-868. 10.1016/j.nut.2008.06.010.
Article
PubMed
Google Scholar
De Loof A, Baggerman G, Breuer M, Claeys I, Cerstiaens A, Clynen E, Janssen T, Schoofs L, Vanden BJ: Gonadotropins in insects: an overview. Arch Insect Biochem Physiol. 2001, 47: 129-138. 10.1002/arch.1044.
Article
CAS
PubMed
Google Scholar
Wu Q, Zhao Z, Shen P: Regulation of aversion to noxious food by Drosophila neuropeptide Y- and insulin-like systems. Nat Neurosci. 2005, 8: 1350-1355. 10.1038/nn1540.
Article
CAS
PubMed
Google Scholar
Lee G, Bahn JH, Park JH: Sex- and clock-controlled expression of the neuropeptide F gene in Drosophila. Proc Natl Acad Sci USA. 2006, 103: 12580-12585. 10.1073/pnas.0601171103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xu J, Li M, Shen P: A G-protein-coupled neuropeptide Y-like receptor suppresses behavioral and sensory response to multiple stressful stimuli in Drosophila. J Neurosci. 2010, 30: 2504-2512. 10.1523/JNEUROSCI.3262-09.2010.
Article
PubMed Central
CAS
PubMed
Google Scholar
Krashes MJ, DasGupta S, Vreede A, White B, Armstrong JD, Waddell S: A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell. 2009, 139: 416-427. 10.1016/j.cell.2009.08.035.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dierick HA, Greenspan RJ: Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nat Genet. 2007, 39: 678-682. 10.1038/ng2029.
Article
CAS
PubMed
Google Scholar
Lingo PR, Zhao Z, Shen P: Co-regulation of cold-resistant food acquisition by insulin- and neuropeptide Y-like systems in Drosophila melanogaster. Neuroscience. 2007, 148: 371-374. 10.1016/j.neuroscience.2007.06.010.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu Q, Wen T, Lee G, Park JH, Cai HN, Shen P: Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron. 2003, 39: 147-161. 10.1016/S0896-6273(03)00396-9.
Article
CAS
PubMed
Google Scholar
Wen T, Parrish CA, Xu D, Wu Q, Shen P: Drosophila neuropeptide F and its receptor, NPFR1, define a signaling pathway that acutely modulates alcohol sensitivity. Proc Natl Acad Sci USA. 2005, 102: 2141-2146. 10.1073/pnas.0406814102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu Q, Zhang Y, Xu J, Shen P: Regulation of hunger-driven behaviors by neural ribosomal S6 kinase in Drosophila. Proc Natl Acad Sci USA. 2005, 102: 13289-13294. 10.1073/pnas.0501914102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gonzalez R, Orchard I: Physiological activity of neuropeptide F on the hindgut of the blood-feeding hemipteran, Rhodnius prolixus. J Insect Sci. 2009, 9: 1-14.
Article
PubMed
Google Scholar
Schoofs L, Clynen E, Cerstiaens A, Baggerman G, Wei Z, Vercammen T, Nachman R, De LA, Tanaka S: Newly discovered functions for some myotropic neuropeptides in locusts. Peptides. 2001, 22: 219-227. 10.1016/S0196-9781(00)00385-5.
Article
CAS
PubMed
Google Scholar
Nässel DR, Enell LE, Santos JG, Wegener C, Johard HA: A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions. BMC Neurosci. 2008, 9: 90-10.1186/1471-2202-9-90.
Article
PubMed Central
PubMed
Google Scholar
Lee KS, You KH, Choo JK, Han YM, Yu K: Drosophila short neuropeptide F regulates food intake and body size. J Biol Chem. 2004, 279: 50781-50789. 10.1074/jbc.M407842200.
Article
CAS
PubMed
Google Scholar
Lee KS, Kwon OY, Lee JH, Kwon K, Min KJ, Jung SA, Kim AK, You KH, Tatar M, Yu K: Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nat Cell Biol. 2008, 10: 468-475. 10.1038/ncb1710.
Article
CAS
PubMed
Google Scholar
Lee KS, Hong SH, Kim AK, Ju SK, Kwon OY, Yu K: Processed short neuropeptide F peptides regulate growth through the ERK-insulin pathway in Drosophila melanogaster. FEBS Lett. 2009, 583: 2573-2577. 10.1016/j.febslet.2009.07.024.
Article
CAS
PubMed
Google Scholar
Huybrechts J, De LA, Schoofs L: Diapausing Colorado potato beetles are devoid of short neuropeptide F I and II. Biochem Biophys Res Commun. 2004, 317: 909-916. 10.1016/j.bbrc.2004.03.136.
Article
CAS
PubMed
Google Scholar
Brockmann A, Annangudi SP, Richmond TA, Ament SA, Xie F, Southey BR, Rodriguez-Zas SR, Robinson GE, Sweedler JV: Quantitative peptidomics reveal brain peptide signatures of behavior. Proc Natl Acad Sci USA. 2009, 106: 2383-2388. 10.1073/pnas.0813021106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ament SA, Velarde RA, Kolodkin MH, Moyse D, Robinson GE: Neuropeptide Y-like signalling and nutritionally mediated gene expression and behaviour in the honey bee. Insect Mol Biol. 2011, 20: 335-345. 10.1111/j.1365-2583.2011.01068.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cerstiaens A, Benfekih L, Zouiten H, Verhaert P, De LA, Schoofs L: Led-NPF-1 stimulates ovarian development in locusts. Peptides. 1999, 20: 39-44. 10.1016/S0196-9781(98)00152-1.
Article
CAS
PubMed
Google Scholar
Marciniak P, Grodecki S, Konopinska D, Rosinski G: Structure-activity relationships for the cardiotropic action of the Led-NPF-I peptide in the beetles Tenebrio molitor and Zophobas atratus. J Pept Sci. 2008, 14: 329-334. 10.1002/psc.933.
Article
CAS
PubMed
Google Scholar
Kahsai L, Kapan N, Dircksen H, Winther AM, Nässel DR: Metabolic stress responses in Drosophila are modulated by brain neurosecretory cells that produce multiple neuropeptides. PLoS One. 2010, 5: e11480-10.1371/journal.pone.0011480.
Article
PubMed Central
PubMed
Google Scholar
Kahsai L, Martin JR, Winther AM: Neuropeptides in the Drosophila central complex in modulation of locomotor behavior. J Exp Biol. 2010, 213: 2256-2265. 10.1242/jeb.043190.
Article
CAS
PubMed
Google Scholar
Garczynski SF, Brown MR, Crim JW: Structural studies of Drosophila short neuropeptide F: Occurrence and receptor binding activity. Peptides. 2006, 27: 575-582. 10.1016/j.peptides.2005.06.029.
Article
CAS
PubMed
Google Scholar
Mertens I, Meeusen T, Huybrechts R, De LA, Schoofs L: Characterization of the short neuropeptide F receptor from Drosophila melanogaster. Biochem Biophys Res Commun. 2002, 297: 1140-1148. 10.1016/S0006-291X(02)02351-3.
Article
CAS
PubMed
Google Scholar
Feng G, Reale V, Chatwin H, Kennedy K, Venard R, Ericsson C, Yu K, Evans PD, Hall LM: Functional characterization of a neuropeptide F-like receptor from Drosophila melanogaster. Eur J Neurosci. 2003, 18: 227-238. 10.1046/j.1460-9568.2003.02719.x.
Article
PubMed
Google Scholar
Reale V, Chatwin HM, Evans PD: The activation of G-protein gated inwardly rectifying K+ channels by a cloned Drosophila melanogaster neuropeptide F-like receptor. Eur J Neurosci. 2004, 19: 570-576. 10.1111/j.0953-816X.2003.03141.x.
Article
PubMed
Google Scholar
Veenstra JA: Peptidergic paracrine and endocrine cells in the midgut of the fruit fly maggot. Cell Tissue Res. 2009, 336: 309-323. 10.1007/s00441-009-0769-y.
Article
CAS
PubMed
Google Scholar
Johard HA, Oishii T, Ircksen H, Usumano P, Ouyer F, Elfrich-Förster C, Nässel DR: Peptidergic clock neurons in Drosophila: ion transport peptide and short neuropeptide F in subsets of dorsal and ventral lateral neurons. J Comp Neurol. 2009, 516: 59-73. 10.1002/cne.22099.
Article
CAS
PubMed
Google Scholar
Johard HA, Enell LE, Gustafsson E, Trifilieff P, Veenstra JA, Nässel DR: Intrinsic neurons of Drosophila mushroom bodies express short neuropeptide F: relations to extrinsic neurons expressing different neurotransmitters. J Comp Neurol. 2008, 507: 1479-1496. 10.1002/cne.21636.
Article
CAS
PubMed
Google Scholar
Carlsson MA, Diesner M, Schachtner J, Nässel DR: Multiple neuropeptides in the Drosophila antennal lobe suggest complex modulatory circuits. J Comp Neurol. 2010, 518: 3359-3380. 10.1002/cne.22405.
Article
CAS
PubMed
Google Scholar
Kim YJ, Zitnan D, Cho KH, Schooley DA, Mizoguchi A, Adams ME: Central peptidergic ensembles associated with organization of an innate behavior. Proc Natl Acad Sci USA. 2006, 103: 14211-14216. 10.1073/pnas.0603459103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Park D, Veenstra JA, Park JH, Taghert PH: Mapping peptidergic cells in Drosophila: where DIMM fits in. PLoS One. 2008, 3: e1896-10.1371/journal.pone.0001896.
Article
PubMed Central
PubMed
Google Scholar
Wurm Y, Wang J, Riba-Grognuz O, Corona M, Nygaard S, Hunt BG, Ingram KK, Falquet L, Nipitwattanaphon M, Gotzek D, Dijkstra MB, Oettler J, Comtesse F, Shih CJ, Wu WJ, Yang CC, Thomas J, Beaudoing E, Pradervand S, Flegel V, Cook ED, Fabbretti R, Stockinger H, Long L, Farmerie WG, Oakey J, Boomsma JJ, Pamilo P, Yi SV, Heinze J, et al.: The genome of the fire ant Solenopsis invicta. Proc Natl Acad Sci USA. 2011, 108: 5679-5684. 10.1073/pnas.1009690108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eichmuller S, Hammer M, Schafer S: Neurosecretory cells in the honeybee brain and suboesophageal ganglion show FMRFamide-like immunoreactivity. J Comp Neurol. 1991, 312: 164-174. 10.1002/cne.903120112.
Article
CAS
PubMed
Google Scholar
Cao C, Brown MR: Localization of an insulin-like peptide in brains of two flies. Cell Tissue Res. 2001, 304: 317-321. 10.1007/s004410100367.
Article
CAS
PubMed
Google Scholar
Fahrbach SE: Structure of the mushroom bodies of the insect brain. Annu Rev Entomol. 2006, 51: 209-232. 10.1146/annurev.ento.51.110104.150954.
Article
CAS
PubMed
Google Scholar
Gronenberg W: Modality-specific segregation of input to ant mushroom bodies. Brain Behav Evol. 1999, 54: 85-95. 10.1159/000006615.
Article
CAS
PubMed
Google Scholar
Seid MA, Harris KM, Traniello JF: Age-related changes in the number and structure of synapses in the lip region of the mushroom bodies in the ant Pheidole dentata. J Comp Neurol. 2005, 488: 269-277. 10.1002/cne.20545.
Article
PubMed
Google Scholar
Farris SM, Abrams AI, Strausfeld NJ: Development and morphology of class II Kenyon cells in the mushroom bodies of the honey bee, Apis mellifera. J Comp Neurol. 2004, 474: 325-339. 10.1002/cne.20146.
Article
PubMed
Google Scholar
Strausfeld NJ: Organization of the honey bee mushroom body: representation of the calyx within the vertical and gamma lobes. J Comp Neurol. 2002, 450: 4-33. 10.1002/cne.10285.
Article
PubMed
Google Scholar
Schurmann FW, Erber J: FMRFamide-like immunoreactivity in the brain of the honeybee (Apis mellifera). A light-and electron microscopical study. Neuroscience. 1990, 38: 797-807. 10.1016/0306-4522(90)90072-C.
Article
CAS
PubMed
Google Scholar
Mobbs P: The brain of the honey bee Apis mellifera. Philosophical Transactions of the Royal Society B: Biological Sciences. 1982, 298: 309-354. 10.1098/rstb.1982.0086.
Article
Google Scholar
Balling A, Technau GM, Heisenberg M: Are the structural changes in adult Drosophila mushroom bodies memory traces? Studies on biochemical learning mutants. J Neurogenet. 1987, 4: 65-73.
Article
CAS
PubMed
Google Scholar
Strauss R: The central complex and the genetic dissection of locomotor behaviour. Curr Opin Neurobiol. 2002, 12: 633-638. 10.1016/S0959-4388(02)00385-9.
Article
CAS
PubMed
Google Scholar
Sinakevitch I, Niwa M, Strausfeld NJ: Octopamine-like immunoreactivity in the honey bee and cockroach: comparable organization in the brain and subesophageal ganglion. J Comp Neurol. 2005, 488: 233-254. 10.1002/cne.20572.
Article
CAS
PubMed
Google Scholar
Fussnecker BL, Smith BH, Mustard JA: Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera). J Insect Physiol. 2006, 52: 1083-1092. 10.1016/j.jinsphys.2006.07.008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hardie SL, Zhang JX, Hirsh J: Trace amines differentially regulate adult locomotor activity, cocaine sensitivity, and female fertility in Drosophila melanogaster. Dev Neurobiol. 2007, 67: 1396-1405. 10.1002/dneu.20459.
Article
CAS
PubMed
Google Scholar
Seid MA, Wehner R: Ultrastructure and synaptic differences of the boutons of the projection neurons between the lip and collar regions of the mushroom bodies in the ant, Cataglyphis albicans. J Comp Neurol. 2008, 507: 1102-1108. 10.1002/cne.21600.
Article
PubMed
Google Scholar
Schachtner J, Schmidt M, Homberg U: Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea+Hexapoda). Arthropod Struct Dev. 2005, 34: 257-299. 10.1016/j.asd.2005.04.003.
Article
Google Scholar
Root CM, Ko KI, Jafari A, Wang JW: Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell. 2011, 145: 133-144. 10.1016/j.cell.2011.02.008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marin EC, Jefferis GS, Komiyama T, Zhu H, Luo L: Representation of the glomerular olfactory map in the Drosophila brain. Cell. 2002, 109: 243-255. 10.1016/S0092-8674(02)00700-6.
Article
CAS
PubMed
Google Scholar
Kreissl S, Eichmuller S, Bicker G, Rapus J, Eckert M: Octopamine-like immunoreactivity in the brain and subesophageal ganglion of the honeybee. J Comp Neurol. 1994, 348: 583-595. 10.1002/cne.903480408.
Article
CAS
PubMed
Google Scholar
Schroter U, Malun D, Menzel R: Innervation pattern of suboesophageal ventral unpaired median neurones in the honeybee brain. Cell Tissue Res. 2007, 327: 647-667. 10.1007/s00441-006-0197-1.
Article
PubMed
Google Scholar
Barron AB, Schulz DJ, Robinson GE: Octopamine modulates responsiveness to foraging-related stimuli in honey bees (Apis mellifera). J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002, 188: 603-610. 10.1007/s00359-002-0335-5.
Article
CAS
PubMed
Google Scholar
Barron AB, Robinson GE: Selective modulation of task performance by octopamine in honey bee (Apis mellifera) division of labour. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005, 191: 659-668. 10.1007/s00359-005-0619-7.
Article
PubMed
Google Scholar
Barron AB, Maleszka R, Vander Meer RK, Robinson GE: Octopamine modulates honey bee dance behavior. Proc Natl Acad Sci USA. 2007, 104: 1703-1707. 10.1073/pnas.0610506104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Giray T, Galindo-Cardona A, Oskay D: Octopamine influences honey bee foraging preference. J Insect Physiol. 2007, 53: 691-698. 10.1016/j.jinsphys.2007.03.016.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hunt GJ: Flight and fight: a comparative view of the neurophysiology and genetics of honey bee defensive behavior. J Insect Physiol. 2007, 53: 399-410. 10.1016/j.jinsphys.2007.01.010.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schulz DJ, Robinson GE: Octopamine influences division of labor in honey bee colonies. J Comp Physiol A. 2001, 187: 53-61. 10.1007/s003590000177.
Article
CAS
PubMed
Google Scholar
Spivak M, Masterman R, Ross R, Mesce KA: Hygienic behavior in the honey bee (Apis mellifera L.) and the modulatory role of octopamine. J Neurobiol. 2003, 55: 341-354. 10.1002/neu.10219.
Article
CAS
PubMed
Google Scholar
Scheiner R, Baumann A, Blenau W: Aminergic control and modulation of honeybee behaviour. Curr Neuropharmacol. 2006, 4: 259-276. 10.2174/157015906778520791.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vander Meer RK, Preston CA, Hefetz A: Queen regulates biogenic amine level and nestmate recognition in workers of the fire ant, Solenopsis invicta. Naturwissenschaften. 2008, 95: 1155-1158. 10.1007/s00114-008-0432-6.
Article
CAS
PubMed
Google Scholar
Vaccari S, Horner K, Mehlmann LM, Conti M: Generation of mouse oocytes defective in cAMP synthesis and degradation: endogenous cyclic AMP is essential for meiotic arrest. Dev Biol. 2008, 316: 124-134. 10.1016/j.ydbio.2008.01.018.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sheng Y, Wang L, Liu XS, Montplaisir V, Tiberi M, Baltz JM, Liu XJ: A serotonin receptor antagonist induces oocyte maturation in both frogs and mice: evidence that the same G protein-coupled receptor is responsible for maintaining meiosis arrest in both species. J Cell Physiol. 2005, 202: 777-786. 10.1002/jcp.20170.
Article
CAS
PubMed
Google Scholar
Rios-Cardona D, Ricardo-Gonzalez RR, Chawla A, Ferrell JE: A role for GPRx, a novel GPR3/6/12-related G-protein coupled receptor, in the maintenance of meiotic arrest in Xenopus laevis oocytes. Dev Biol. 2008, 317: 380-388. 10.1016/j.ydbio.2008.02.047.
Article
PubMed Central
CAS
PubMed
Google Scholar
Edson MA, Lin YN, Matzuk MM: Deletion of the novel oocyte-enriched gene, Gpr149, leads to increased fertility in mice. Endocrinology. 2010, 151: 358-368. 10.1210/en.2009-0760.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shmueli A, Cohen-Gazala O, Neuman-Silberberg FS: Gurken, a TGF-alpha-like protein involved in axis determination in Drosophila, directly binds to the EGF-receptor homolog Egfr. Biochem Biophys Res Commun. 2002, 291: 732-737. 10.1006/bbrc.2002.6426.
Article
CAS
PubMed
Google Scholar
Bastock R, Strutt D: The planar polarity pathway promotes coordinated cell migration during Drosophila oogenesis. Development. 2007, 134: 3055-3064. 10.1242/dev.010447.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chintapalli VR, Wang J, Dow JA: Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet. 2007, 39: 715-720. 10.1038/ng2049.
Article
CAS
PubMed
Google Scholar
Chen ME, Lewis DK, Keeley LL, Pietrantonio PV: cDNA cloning and transcriptional regulation of the vitellogenin receptor from the imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Insect Mol Biol. 2004, 13: 195-204. 10.1111/j.0962-1075.2004.00477.x.
Article
CAS
PubMed
Google Scholar
Lu HL, Vinson SB, Pietrantonio PV: Oocyte membrane localization of vitellogenin receptor coincides with queen flying age, and receptor silencing by RNAi disrupts egg formation in fire ant virgin queens. FEBS J. 2009, 276: 3110-3123. 10.1111/j.1742-4658.2009.07029.x.
Article
CAS
PubMed
Google Scholar
Lu HL, Kersch C, Pietrantonio PV: The kinin receptor is expressed in the Malpighian tubule stellate cells in the mosquito Aedes aegypti (L.): A new model needed to explain ion transport?. Insect Biochem Mol Biol. 2010, 41: 135-140.
Article
PubMed Central
PubMed
Google Scholar