Aikawa T, Holm ML, Kanekiyo T. ABCA7 and pathogenic pathways in Alzheimer’s disease. Brain Sci. 2018;8:27.
Article
PubMed Central
Google Scholar
Arrant AE, Onyilo VC, Unger DE, Roberson ED. Progranulin gene therapy improves lysosomal dysfunction and microglial pathology associated with frontotemporal dementia and neuronal ceroid lipofuscinosis. J Neurosci. 2018;38:2341–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Behnke V, Langmann T. Neuroinflammation in neuronal ceroid lipofuscinosis. Ophthalmologe. 2021;118:98–105.
Article
CAS
PubMed
Google Scholar
Berrocal M, Sepulveda MR, Vazquez-Hernandez M, Mata AM. Calmodulin antagonizes amyloid-β peptides-mediated inhibition of brain plasma membrane Ca(2+)-ATPase. Biochim Biophys Acta. 2012;1822:961–9.
Article
CAS
PubMed
Google Scholar
Boczek T, Sobolczyk M, Mackiewicz J, Lisek M, Ferenc B, Guo F, Zylinska L. Crosstalk among calcium ATPases: PMCA, SERCA and SPCA in mental diseases. Int J Mol Sci. 2021;22:2785.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bohush A, Leśniak W, Weis S, Filipek A. Calmodulin and its binding proteins in Parkinson’s disease. Int J Mol Med. 2021;22:2016.
Google Scholar
Bright F, Werry EL, Dobson-Stone C, Piguet O, Ittner LM, Halliday GM, Hodges JR, Kiernan MC, Loy CT, Kassiou M, Kril JJ. Neuroinflammation in frontotemporal dementia. Nat Rev Neurol. 2019;15:540–55.
Article
PubMed
Google Scholar
Chavez SE, O’Day DH. Calmodulin binds to and regulates the activity of beta-secretase (BACE1). Curr Res Alz Dis. 2007;1(1/2):37–47.
CAS
Google Scholar
Corbacho I, Berrocal M, Török K, Mata AM, Gutierrez-Merino C. High affinity binding of amyloid β-peptide to calmodulin: Structural and functional implications. Biochem Biophys Res Commun. 2017;486:992–7.
Article
CAS
PubMed
Google Scholar
Cummings J, Lee G, Zhong K, Fonseca J, Taghva K. Alzheimer’s disease drug development pipeline: 2021. Alzheimers Dement. 2021;7:e12179.
Google Scholar
Dearborn JT, Harmon SK, Fowler SC, O’Malley KL, Taylor GT, Sands MS, Wozniak DF. Comprehensive functional characterization of murine infantile Batten disease including Parkinson-like behavior and dopaminergic markers. Sci Rep. 2015;5:12752.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deckel AW. Nitric oxide and nitric oxide synthase in Huntington’s disease. J Neurosci Res. 2001;64:99–107.
Article
CAS
PubMed
Google Scholar
Deckel AW, Elder R, Fuhrer G. Biphasic developmental changes in Ca2+/calmodulin-dependent proteins in R6/2 Huntington’s disease mice. NeuroReport. 2002;919:70–81.
Google Scholar
Deng H, Xiu X, Jankovic J. Genetic convergence of Parkinson’s disease and lysosomal storage disorders. Mol Neurobiol. 2015;51:1554–68.
Article
CAS
PubMed
Google Scholar
Dudek NL, Dai Y, Muma NA. Neuroprotective effects of calmodulin peptide 76–121aa: disruption of calmodulin binding to mutant huntingtin. Brain Pathol. 2010;20:176–89.
Article
CAS
PubMed
Google Scholar
Geier EG, Bourdenx M, Storm NJ, Cochran JN, Sirkis DW, Hwang JH, Bonham LW, Ramos EM, Diaz A, Van Berlo V, Dokuru D, Nana AL, Karydas A, Balestra ME, Huang Y, Russo SP, Spina S, Grinberg LT, Seeley WW, Myers RM, Miller BL, Coppola G, Lee SE, Cuervo AM, Yokoyama JS. Rare variants in the neuronal ceroid lipofuscinosis gene MFSD8 are candidate risk factors for frontotemporal dementia. Acta Neuropathol. 2019;137:71–88.
Article
CAS
PubMed
Google Scholar
Ghosh A, Geise KP. Calcium/calmodulin-dependent kinase II and Alzheimer’s disease. Mol Brain. 2015;8:78.
Article
PubMed
PubMed Central
Google Scholar
Govindarajan V, de Rivero Vaccari JP, Keane RW. Role of inflammasomes in multiple sclerosis and their potential as therapeutic targets. J Neuroinflamm. 2020;17:260.
Article
CAS
Google Scholar
Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21:677–87.
Article
PubMed
PubMed Central
Google Scholar
Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N. Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol. 2019;10:1008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holbrook JA, Jarosz-Griffiths HH, Caseley E, Lara-Reyna S, Poulter JA, Williams-Gray CH, Peckham D, McDermott MF. Neurodegenerative disease and the NLRP3 Inflammasome. Front Pharmacol. 2021;12:643254.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hampel H, Caraci F, Cuello AC, Caruso G, Nisticò R, Corbo M, Baldacci F, Toschi N, Garaci F, Chiesa PA, Verdooner SR, Akman-Anderson L, Hernández F, Ávila J, Emanuele E, Valenzuela PL, Lucía A, Watling M, Imbimbo BP, Vergallo A, Lista S. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease. Front Immunol. 2020;11:456.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong HS, Hwang JY, Son SM, Kim YH, Moon M, Inhee MJ. FK506 reduces amyloid plaque burden and induces MMP-9 in AβPP/PS1 double transgenic mice. J Alzheimers Dis. 2010;22:97–105.
Article
CAS
PubMed
Google Scholar
Huber RH. Altered protein secretion in Batten disease. Dis Mod Mech. 2021;14:dmm049152.
Article
CAS
Google Scholar
Iwamoto N, Lu R, Abe-Dohmae S, Yokoyama S. Calmodulin interacts with ATP binding cassette transporter A1 to protect from calpain-mediated degradation and upregulates high-density lipoprotein generation. Arterioscler Thromb Vasc Biol. 2010;30:1446–52.
Article
CAS
PubMed
Google Scholar
Jain MK, Bhat R. Modulation of human a-synuclein aggregation by a combined effect of calcium and dopamine. Neurobiol Dis. 2014;63:115–28.
Article
CAS
PubMed
Google Scholar
Jay TR, von Saucken VE, Landreth GE. TREM2 in neurodegenerative diseases. Mol Neurodegener. 2017;12:56.
Article
PubMed
PubMed Central
Google Scholar
Jiménez-Jiménez FJ, Alonso-Navarro H, Herrero MT, García-Martín E, Agúndez JA. An update on the role of nitric oxide in the neurodegenerative processes of Parkinson’s disease. Curr Med Chem. 2016;23:2666–79.
Article
PubMed
Google Scholar
Jung HH, Kim JH, Shim JS, Kwon HJ. A novel Ca2+/calmodulin antagonist HBC inhibits angiogenesis and down-regulated hypoxia-inducible factor. J Biol Chem. 2010;285:25867–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khachaturian ZS. Towards theories of brain aging. In: Kay DS, Burrows GW, editors. Handbook of studies on psychiatry and old age. Amsterdam: Elsevier; 1984. p. 7–30.
Google Scholar
Khachaturian ZS. Calcium hypothesis of Alzheimer’s disease and brain aging. Ann N Y Acad Sci. 1994;747:1–11.
Article
CAS
PubMed
Google Scholar
Kleinberger G, Brendel M, Mracsko E, Wefers B, Groeneweg L, Xiang X, Focke C, Deußing M, Suárez-Calvet M, Mazaheri F, Parhizkar S, Pettkus N, Wurst W, Feederle R, Bartenstein P, Mueggler T, Arzberger T, Knuesel I, Rominger A, Haass C. The FTD-like syndrome causing TREM2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism. EMBO J. 2017;36:1837–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lange J, Lunde KA, Sletten C, Møller SG, Tysnes OB, Alves G, Larsen JP, Maple-Grødem J. Association of a BACE1 gene polymorphism with Parkinson’s disease in a Norwegian population. Parkinsons Dis. 2015;2015:973298.
PubMed
PubMed Central
Google Scholar
Lenzi C, Ramazzina I, Russo I, Filippini A, Bettuzzi S, Rizzi F. The down-regulation of clusterin expression enhances the αsynuclein aggregation process. Int J Mol Sci. 2020;21:7181.
Article
CAS
PubMed Central
Google Scholar
Lim EW, Aarsland D, Ffytche D, Taddei RN, van Wamelen DJ, Wan YM, Tan EK, Ray Chaudhuri K, Kings Parcog groupMDS Nonmotor study group. Amyloid-β and Parkinson’s disease. J Neurol. 2019;266:2605–19.
Article
CAS
PubMed
Google Scholar
Liu CY, Wang X, Liu C, Zhang HL. Targeting of microglial activation: new therapeutic approach. Front Cell Neurosci. 2019;13:514.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lyssenko NN, Praticó D. ABCA7 and the altered lipidostasis hypothesis of Alzheimer’s disease. Alz Dement. 2020;17:164–74.
Article
Google Scholar
Mruk K, Farley BM, Ritacco AW, Kobertz WR. Calmodulation meta-analysis: predicting calmodulin binding via canonical motif clustering. J Gen Physiol. 2014;144:105–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nassal D, Gratz D, Hund TJ. Challenges and opportunities for therapeutic targeting of calmodulin kinase in heart. Front Pharmacol. 2020;11:35.
Article
PubMed
PubMed Central
Google Scholar
O’Day DH, Myre MA. Calmodulin-binding domains in Alzheimer’s disease proteins: extending the calcium hypothesis. Biochem Biophys Res Commun. 2004;230:1051–4.
Article
Google Scholar
O’Day DH, Eshak K, Myre MA. Calmodulin binding proteins and Alzheimer’s disease: a review. J Alz Dis. 2015;46:553–69.
Google Scholar
O’Day DH. Alzheimer’s disease: a short introduction to the calmodulin hypothesis. AIMS Neurosci. 2019;6:231–9.
Article
PubMed
PubMed Central
Google Scholar
O’Day DH. Calmodulin binding proteins and Alzheimer’s disease: Biomarkers, regulatory enzymes and receptors that are regulated by calmodulin. Int J Mol Sci. 2020;21:7344.
Article
PubMed Central
Google Scholar
O’Day DH, Huber RJ, Suarez A. Extracellular calmodulin regulates growth and cAMP-mediated chemotaxis in Dictyostelium discoideum. Biochem Biophys Res Commun. 2012;425:750–4.
Article
PubMed
Google Scholar
Palpagama TH, Waldvogel HJ, Faull RJM, Kwakowsky A. The role of microglia and astrocytes in Huntington’s disease. Front Mol Neuro. 2019;12:258.
Article
CAS
Google Scholar
Poejo J, Salazar J, Mata AM, Gutierrez-Merino C. The relevance of amyloid b-calmodulin complexation in neurons and brain degeneration in Alzheimer’s disease. Int J Mol Sci. 2021;22:496.
Article
Google Scholar
Popugaeva E, Pchitskaya E, Bezprozvanny I. Dysregulation of neuronal calcium homeostasis in Alzheimer’s disease—a therapeutic opportunity? Biochem Biophys Res Commun. 2017;483:998–1004.
Article
CAS
PubMed
Google Scholar
Qureshi YH, Patel VM, Berman DE, Kothiya MJ, Neufeld JL, Vardarajan B, Tang M, Reyes-Dumeyer D, Lantigua R, Medrano M, Jiménez-Velázquez IJ, Small SA, Reitz C. An Alzheimer’s disease-linked loss-of-function CLN5 variant impairs cathepsin D maturation, consistent with a retromer trafficking defect. Mol Cell Biol. 2018;38:e00011-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Querol-Vilaseca M, Colom-Cadena M, Pegueroles J, San Martín-Paniello C, Clarimon J, Belbin O, Fortea J, Lleó A. YKL-40 (Chitinase 3-like I) is expressed in a subset of astrocytes in Alzheimer’s disease and other tauopathies. J Neuroinflammation. 2017;14:118.
Article
PubMed
PubMed Central
Google Scholar
Rhoads AR, Friedberg F. Sequence motifs for calmodulin recognition. FASEB J. 1997;11:331–40.
Article
CAS
PubMed
Google Scholar
Mathavarajah S, O’Day DH, Huber RJ. Neuronal ceroid lipofuscinoses: connecting calcium signalling through calmodulin. Cells. 2018;7:188.
Article
CAS
PubMed Central
Google Scholar
Sharma RK, Parameswaran S. Calmodulin-binding proteins: a journey of 40 years. Cell Calcium. 2018;75:89–100.
Article
CAS
PubMed
Google Scholar
Sommer A, Winner B, Prots I. The trojan horse—neuroinflammatory impact of T cells in neurodegenerative diseases. Mol Neurodegen. 2017;12:78.
Article
Google Scholar
Surendranathan A, Su L, Mak E, Passamonti L, Hong YT, Arnold R, Vázquez Rodríguez P, Bevan-Jones WR, Brain SAE, Fryer TD, Aigbirhio FI, Rowe JB, O’Brien JT. Early microglial activation and peripheral inflammation in dementia with Lewy bodies. Brain. 2018;141:3415–27.
Article
PubMed
PubMed Central
Google Scholar
Sweeney MD, Sagare AP, Zlokovic BV. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14:133–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taglialatella G, Rastellini C, Cicalese L. Reduced incidence of dementia in solid organ transplant patients treated with calcineurin inhibitors. J Alz Dis. 2015;47:329–33.
Google Scholar
Tarczyluk-Wells MA, Salzlechner C, Najafi AR, Lim MJ, Smith D, Platt FM, Williams BP, Cooper JD. Combined anti-inflammatory and neuroprotective treatments have the potential to impact disease phenotypes in Cln3−/− mice. Front Neurol. 2019;10:963.
Article
PubMed
PubMed Central
Google Scholar
Tidow H, Nissen P. Structural diversity of calmodulin binding to its target sites. FEBS J. 2013;280:5551–65.
Article
CAS
PubMed
Google Scholar
Troncoso-Escudero P, Parra A, Nassif M, Vidal RL. Outside in: Unraveling the role of neuroinflammation in the progression of Parkinson’s disease. Front Neurol. 2018;9:860.
Article
PubMed
PubMed Central
Google Scholar
Wang R, Yin YX, Mahmood Q, Wang XJ, Gao YP, Gou GJ, Ahmed MM, Kohji F, Du YZ, Han F. Calmodulin inhibitor ameliorates cognitive dysfunction via inhibiting nitrosative stress and NLRP3 signaling in mice with bilateral carotid artery stenosis. CNS Neurosci Ther. 2017;23:818–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ward ME, Chen R, Huang HY, Ludwig C, Telpoukhovskaia M, Taubes A, Boudin H, Minami SS, Reichert M, Albrecht P, Gelfand JM, Cruz-Herranz A, Cordano C, Alavi MV, Leslie S, Seeley WW, Miller BL, Bigio E, Mesulam MM, Bogyo MS, Mackenzie IR, Staropoli JF, Cotman SL, Huang EJ, Gan L, Green AJ. Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Sci Transl Med. 2017;9:eeah5642.
Article
Google Scholar
Xu Y, Kirberger M, Yang JJ. Aspects and prediction of calmodulin binding proteins. Int J Mol Sci. 2021;22:308.
Google Scholar
Yan YQ, Fang Y, Zheng R, Pu JL, Zhang BR. NLRP3 inflammasomes in Parkinson’s disease and their regulation by Parkin. Neuroscience. 2020;446:323–34.
Article
CAS
PubMed
Google Scholar
Yap KL, Kim J, Truong K, Sherman M, Yuan T, Ikura M. Calmodulin target database. J Struct Funct Genomics. 2000;1:8–14.
Article
CAS
PubMed
Google Scholar
Yuan K, Yong S, Xu F, Zhou T, McDonald JM, Chen Y. Calmodulin antagonists promote TRA-8 therapy of resistant pancreatic cancer. Oncotarget. 2015;6:25308–19.
Article
PubMed
PubMed Central
Google Scholar
Zalchick SV, McGrath KM, Caraveo G. The role of Ca2+ signaling in Parkinson’s disease. Dis Mod Mech. 2017;10:519–35.
Article
Google Scholar