Dixon ML, Thiruchselvam R, Todd R, Christoff K. Emotion and the prefrontal cortex: an integrative review. Psychol Bull. 2017;143(10):1033–81.
PubMed
Google Scholar
Nyberg L. Cognitive control in the prefrontal cortex: a central or distributed executive? Scand J Psychol. 2018;59(1):62–5.
PubMed
Google Scholar
Levkovitz Y, Harel EV, Roth Y, Braw Y, Most D, Katz LN, Sheer A, Gersner R, Zangen A. Deep transcranial magnetic stimulation over the prefrontal cortex: evaluation of antidepressant and cognitive effects in depressive patients. Brain Stimul. 2009;2(4):188–200.
PubMed
Google Scholar
d’Arbeloff TC, Kim MJ, Knodt AR, Radtke SR, Brigidi BD, Hariri AR. Microstructural integrity of a pathway connecting the prefrontal cortex and amygdala moderates the association between cognitive reappraisal and negative emotions. Emotion. 2018;18(6):912–5.
PubMed
PubMed Central
Google Scholar
Orlov ND, Tracy DK, Joyce D, Patel S, Rodzinka-Pasko J, Dolan H, Hodsoll J, Collier T, Rothwell J, Shergill SS. Stimulating cognition in schizophrenia: a controlled pilot study of the effects of prefrontal transcranial direct current stimulation upon memory and learning. Brain Stimul. 2017;10(3):560–6.
PubMed
Google Scholar
McClure MM, Barch DM, Romero MJ, Minzenberg MJ, Triebwasser J, Harvey PD, Siever LJ. The effects of guanfacine on context processing abnormalities in schizotypal personality disorder. Biol Psychiatry. 2007;61(10):1157–60.
CAS
PubMed
Google Scholar
Rolls ET. The orbitofrontal cortex. Philos Trans R Soc Lond B Biol Sci. 1996;351(1346):1433–43 (discussion 1443–1434).
CAS
PubMed
Google Scholar
Berridge KC, Kringelbach ML. Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology. 2008;199(3):457–80.
CAS
PubMed
PubMed Central
Google Scholar
Izquierdo A. Functional heterogeneity within rat orbitofrontal cortex in reward learning and decision making. J Neurosci. 2017;37(44):10529–40.
CAS
PubMed
PubMed Central
Google Scholar
Jackowski AP, Araujo Filho GM, Almeida AG, Araujo CM, Reis M, Nery F, Batista IR, Silva I, Lacerda AL. The involvement of the orbitofrontal cortex in psychiatric disorders: an update of neuroimaging findings. Braz J Psychiatry. 2012;34(2):207–12.
PubMed
Google Scholar
Spuhler K, Bartlett E, Ding J, DeLorenzo C, Parsey R, Huang C. Diffusion entropy: a potential neuroimaging biomarker of bipolar disorder in the temporal pole. Synapse. 2018. https://doi.org/10.1002/syn.22015.
Article
PubMed
Google Scholar
Nam HY, Song SH, Kim SJ, Kwak IS, Kim IJ, Lee SB, Lee DW, Kim BS, Pak K, Kim YK, et al. Effect of dialysis on cerebral blood flow in depressive end-stage renal disease patients. Ann Nucl Med. 2011;25(3):165–71.
CAS
PubMed
Google Scholar
McCabe C, Woffindale C, Harmer CJ, Cowen PJ. Neural processing of reward and punishment in young people at increased familial risk of depression. Biol Psychiatry. 2012;72(7):588–94.
PubMed
Google Scholar
Hermans EJ, Ramsey NF, van Honk J. Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biol Psychiatry. 2008;63(3):263–70.
CAS
PubMed
Google Scholar
Maki-Marttunen V, Kuusinen V, Perakyla J, Ogawa KH, Brause M, Brander A, Hartikainen KM. Greater attention to task-relevant threat due to orbitofrontal lesion. J Neurotrauma. 2017;34(2):400–13.
PubMed
Google Scholar
Mansouri FA, Buckley MJ, Tanaka K. The essential role of primate orbitofrontal cortex in conflict-induced executive control adjustment. J Neurosci. 2014;34(33):11016–31.
CAS
PubMed
PubMed Central
Google Scholar
Kalin NH, Shelton SE, Davidson RJ. Role of the primate orbitofrontal cortex in mediating anxious temperament. Biol Psychiatry. 2007;62(10):1134–9.
PubMed
PubMed Central
Google Scholar
Orsini CA, Trotta RT, Bizon JL, Setlow B. Dissociable roles for the basolateral amygdala and orbitofrontal cortex in decision-making under risk of punishment. J Neurosci. 2015;35(4):1368–79.
CAS
PubMed
PubMed Central
Google Scholar
Rudebeck PH, Walton ME, Millette BH, Shirley E, Rushworth MF, Bannerman DM. Distinct contributions of frontal areas to emotion and social behaviour in the rat. Eur J Neurosci. 2007;26(8):2315–26.
PubMed
PubMed Central
Google Scholar
Xing B, Zhao Y, Zhang H, Dang Y, Chen T, Huang J, Luo Q. Microinjection of valproic acid into the ventrolateral orbital cortex exerts an antidepressant-like effect in the rat forced swim test. Brain Res Bull. 2011;85(3–4):153–7.
CAS
PubMed
Google Scholar
Zhao Y, Liu P, Chu Z, Liu F, Han W, Xun X, Dang YH. Electrolytic lesions of the bilateral ventrolateral orbital cortex inhibit methamphetamine-associated contextual memory formation in rats. Brain Res. 2015;1624:214–21.
CAS
PubMed
Google Scholar
Zhao Y, Wang S, Chu Z, Dang Y, Zhu J, Su X. MicroRNA-101 in the ventrolateral orbital cortex (VLO) modulates depressive-like behaviors in rats and targets dual-specificity phosphatase 1 (DUSP1). Brain Res. 2017;1669:55–62.
CAS
PubMed
Google Scholar
Zhao Y, Xing B, Dang Y-h, Qu C-l, Zhu F, Yan C-x. Microinjection of valproic acid into the ventrolateral orbital cortex enhances stress-related memory formation. PLoS ONE. 2013;8(1): e52698.
CAS
PubMed
PubMed Central
Google Scholar
Hajszan T, Dow A, Warner-Schmidt JL, Szigeti-Buck K, Sallam NL, Parducz A, Leranth C, Duman RS. Remodeling of hippocampal spine synapses in the rat learned helplessness model of depression. Biol Psychiatry. 2009;65(5):392–400.
PubMed
Google Scholar
Liu F, Dong YY, Lei G, Zhou Y, Liu P, Dang YH. HINT1 is involved in the chronic mild stress elicited oxidative stress and apoptosis through the PKC epsilon/ALDH-2/4HNE pathway in prefrontal cortex of rats. Front Behav Neurosci. 2021;15: 690344.
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Dong Y, Liu F, Gao C, Ji C, Dang Y, Ma X, Liu Y. A study of antidepressant effect and mechanism on intranasal delivery of BDNF-HA2TAT/AAV to rats with post-stroke depression. Neuropsychiatr Dis Treat. 2020;16:637–49.
CAS
PubMed
PubMed Central
Google Scholar
Roberts AC, Wallis JD. Inhibitory control and affective processing in the prefrontal cortex: neuropsychological studies in the common marmoset. Cereb Cortex. 2000;10(3):252–62.
CAS
PubMed
Google Scholar
Rudebeck PH, Saunders RC, Prescott AT, Chau LS, Murray EA. Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating. Nat Neurosci. 2013;16(8):1140–5.
CAS
PubMed
PubMed Central
Google Scholar
Howard JD, Kahnt T. Identity-specific reward representations in orbitofrontal cortex are modulated by selective devaluation. J Neurosci. 2017;37(10):2627–38.
CAS
PubMed
PubMed Central
Google Scholar
Kazama AM, Davis M, Bachevalier J. Neonatal lesions of orbital frontal areas 11/13 in monkeys alter goal-directed behavior but spare fear conditioning and safety signal learning. Front Neurosci. 2014;8:37.
PubMed
PubMed Central
Google Scholar
Barbas H. Flow of information for emotions through temporal and orbitofrontal pathways. J Anat. 2007;211(2):237–49.
PubMed
PubMed Central
Google Scholar
Price JL. Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions. Ann N Y Acad Sci. 2007;1121:54–71.
PubMed
Google Scholar
Bachevalier J, Machado CJ, Kazama A. Behavioral outcomes of late-onset or early-onset orbital frontal cortex (areas 11/13) lesions in rhesus monkeys. Ann N Y Acad Sci. 2011;1239:71–86.
PubMed
PubMed Central
Google Scholar
Xing B, Liu P, Xu W-j, Xu F-y, Dang Y-h. Effect of microinjecting of 5-aza-2-deoxycytidine into ventrolateral orbital cortex on depressive-like behavior in rats. Neurosci Lett. 2014;574:11–4.
CAS
PubMed
Google Scholar
Roppongi T, Nakamura M, Asami T, Hayano F, Otsuka T, Uehara K, Fujiwara A, Saeki T, Hayasaka S, Yoshida T, et al. Posterior orbitofrontal sulcogyral pattern associated with orbitofrontal cortex volume reduction and anxiety trait in panic disorder. Psychiatry Clin Neurosci. 2010;64(3):318–26.
PubMed
Google Scholar
Park J, Wood J, Bondi C, Del Arco A, Moghaddam B. Anxiety evokes hypofrontality and disrupts rule-relevant encoding by dorsomedial prefrontal cortex neurons. J Neurosci. 2016;36(11):3322–35.
CAS
PubMed
PubMed Central
Google Scholar
Huey ED, Lee S, Lieberman JA, Devanand DP, Brickman AM, Raymont V, Krueger F, Grafman J. Brain regions associated with internalizing and externalizing psychiatric symptoms in patients with penetrating traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2016;28(2):104–11.
PubMed
Google Scholar
Dusi N, Barlati S, Vita A, Brambilla P. Brain structural effects of antidepressant treatment in major depression. Curr Neuropharmacol. 2015;13(4):458–65.
CAS
PubMed
PubMed Central
Google Scholar
Lai T, Payne ME, Byrum CE, Steffens DC, Krishnan KR. Reduction of orbital frontal cortex volume in geriatric depression. Biol Psychiatry. 2000;48(10):971–5.
CAS
PubMed
Google Scholar
Opel N, Redlich R, Grotegerd D, Dohm K, Zaremba D, Meinert S, Burger C, Plumpe L, Alferink J, Heindel W, et al. Prefrontal brain responsiveness to negative stimuli distinguishes familial risk for major depression from acute disorder. J Psychiatry Neurosci. 2017;42(5):343–52.
PubMed
PubMed Central
Google Scholar
Hamani C, Mayberg H, Stone S, Laxton A, Haber S, Lozano AM. The subcallosal cingulate gyrus in the context of major depression. Biol Psychiatry. 2011;69(4):301–8.
PubMed
Google Scholar
Tang JS, Qu CL, Huo FQ. The thalamic nucleus submedius and ventrolateral orbital cortex are involved in nociceptive modulation: a novel pain modulation pathway. Prog Neurobiol. 2009;89(4):383–9.
PubMed
Google Scholar
Rossi F, Maione S, Berrino L. Periaqueductal gray area and cardiovascular function. Pharmacol Res. 1994;29(1):27–36.
CAS
PubMed
Google Scholar
Zare A, Jahanshahi A, Rahnama’i MS, Schipper S, van Koeveringe GA. The role of the periaqueductal gray matter in lower urinary tract function. Mol Neurobiol. 2019;56(2):920–34.
CAS
PubMed
Google Scholar
Nelson RJ, Trainor BC. Neural mechanisms of aggression. Nat Rev Neurosci. 2007;8(7):536–46.
CAS
PubMed
Google Scholar
Lonstein JS, Stern JM. Role of the midbrain periaqueductal gray in maternal nurturance and aggression: c-fos and electrolytic lesion studies in lactating rats. J Neurosci. 1997;17(9):3364–78.
CAS
PubMed
PubMed Central
Google Scholar
Lonstein JS, Gammie SC. Sensory, hormonal, and neural control of maternal aggression in laboratory rodents. Neurosci Biobehav Rev. 2002;26(8):869–88.
PubMed
Google Scholar
Kollack-Walker S, Newman SW. Mating and agonistic behavior produce different patterns of Fos immunolabeling in the male Syrian hamster brain. Neuroscience. 1995;66(3):721–36.
CAS
PubMed
Google Scholar
Delville Y, De Vries GJ, Ferris CF. Neural connections of the anterior hypothalamus and agonistic behavior in golden hamsters. Brain Behav Evol. 2000;55(2):53–76.
CAS
PubMed
Google Scholar
Gammie SC, Nelson RJ. cFOS and pCREB activation and maternal aggression in mice. Brain Res. 2001;898(2):232–41.
CAS
PubMed
Google Scholar
Zhang S, Tang JS, Yuan B, Jia H. Involvement of the frontal ventrolateral orbital cortex in descending inhibition of nociception mediated by the periaqueductal gray in rats. Neurosci Lett. 1997;224(2):142–6.
CAS
PubMed
Google Scholar
Zhang YQ, Tang JS, Yuan B, Jia H. Inhibitory effects of electrically evoked activation of ventrolateral orbital cortex on the tail-flick reflex are mediated by periaqueductal gray in rats. Pain. 1997;72(1–2):127–35.
CAS
PubMed
Google Scholar
Zhang S, Tang JS, Yuan B, Jia H. Inhibitory effects of electrical stimulation of ventrolateral orbital cortex on the rat jaw-opening reflex. Brain Res. 1998;813(2):359–66.
CAS
PubMed
Google Scholar
Karageorgiou E, Miller BL. Frontotemporal lobar degeneration: a clinical approach. Semin Neurol. 2014;34(2):189–201.
PubMed
Google Scholar
Julien CL, Thompson JC, Wild S, Yardumian P, Snowden JS, Turner G, Craufurd D. Psychiatric disorders in preclinical Huntington’s disease. J Neurol Neurosurg Psychiatry. 2007;78(9):939–43.
PubMed
Google Scholar
Marsh L. Depression and Parkinson’s disease: current knowledge. Curr Neurol Neurosci Rep. 2013;13(12):409.
PubMed
PubMed Central
Google Scholar
Fellows LK. The role of orbitofrontal cortex in decision making: a component process account. Ann N Y Acad Sci. 2007;1121:421–30.
PubMed
Google Scholar