Brady ST, Siegel GJ, Albers RW, Price DL, Benjamins J. Basic neurochemistry: principles of molecular, cellular, and medical neurobiology. 8th ed. Amsterdam; Boston: Elsevier/Academic Press; 2012. http://www.loc.gov/catdir/enhancements/fy1606/2012382367-d.html.
Adibhatla RM, Hatcher JF. Role of lipids in brain injury and diseases. Future Lipidol. 2007;2:403–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Farooqui T, Farooqui AA. Lipid-mediated oxidative stress and inflammation in the pathogenesis of Parkinson’s disease. Park Dis. 2011;2011:247467.
Google Scholar
Rostamkhani F, Zardooz H, Zahediasl S, Farrokhi B. Comparison of the effects of acute and chronic psychological stress on metabolic features in rats. J Zhejiang Univ Sci B. 2012;13:904–12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rabasa C, Pastor-Ciurana J, Delgado-Morales R, Gomez-Roman A, Carrasco J, Gagliano H, et al. Evidence against a critical role of CB1 receptors in adaptation of the hypothalamic-pituitary-adrenal axis and other consequences of daily repeated stress. Eur Neuropsychopharmacol. 2015;25:1248–59.
Article
PubMed
CAS
Google Scholar
Wang Chao, He-ming Wu, Jing Xiao-rong, Meng Qiang, Liu Bei, Zhang Hua, et al. Oxidative parameters in the rat brain of chronic mild stress model for depression: relation to anhedonia-like response. J Membr Biol. 2012;245:675–81.
Article
PubMed
CAS
Google Scholar
Feychting M, Ahlbom A, Kheifets L. EMF and health. Annu Rev Public Health. 2005;26:165–89.
Article
PubMed
Google Scholar
Simko M. Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr Med Chem. 2007;14:1141–52.
Article
PubMed
CAS
Google Scholar
Consales C, Merla C, Marino C, Benassi B. Electromagnetic fields, oxidative stress, and neurodegeneration. Int J Cell Biol. 2012;2012:683897.
Article
PubMed
PubMed Central
Google Scholar
Torres-Duran PV, Ferreira-Hermosillo A, Juarez-Oropeza MA, Elias-Vinas D, Verdugo-Diaz L. Effects of whole body exposure to extremely low frequency electromagnetic fields (ELF-EMF) on serum and liver lipid levels, in the rat. Lipids Health Dis. 2007;6:31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Martinez-Samano J, Torres-Duran PV, Juarez-Oropeza MA, Verdugo-Diaz L. Effect of acute extremely low frequency electromagnetic field exposure on the antioxidant status and lipid levels in rat brain. Arch Med Res. 2012;43:183–9.
Article
PubMed
CAS
Google Scholar
Jelenkovic A, Janac B, Pesic V, Jovanovic DM, Vasiljevic I, Prolic Z. Effects of extremely low-frequency magnetic field in the brain of rats. Brain Res Bull. 2006;68:355–60.
Article
PubMed
CAS
Google Scholar
Falone S, Mirabilio A, Carbone MC, Zimmitti V, Di Loreto S, Mariggio MA, et al. Chronic exposure to 50 Hz magnetic fields causes a significant weakening of antioxidant defence systems in aged rat brain. Int J Biochem Cell Biol. 2008;40:2762–70.
Article
PubMed
CAS
Google Scholar
Sahin E, Gumuslu S. Stress-dependent induction of protein oxidation, lipid peroxidation and anti-oxidants in peripheral tissues of rats: comparison of three stress models (immobilization, cold and immobilization-cold). Clin Exp Pharmacol Physiol. 2007;34:425–31.
Article
PubMed
CAS
Google Scholar
Vazquez-Garcia M, Elias-Vinas D, Reyes-Guerrero G, Dominguez-Gonzalez A, Verdugo-Diaz L, Guevara-Guzman R. Exposure to extremely low-frequency electromagnetic fields improves social recognition in male rats. Physiol Behav. 2004;82:685–90.
Article
PubMed
CAS
Google Scholar
Heffner TG, Hartman JA, Seiden LS. A rapid method for the regional dissection of the rat brain. Pharmacol Biochem Behav. 1980;13:453–6.
Article
PubMed
CAS
Google Scholar
Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–509.
PubMed
CAS
Google Scholar
Torres-Duran PV, Paredes-Carbajal MC, Mascher D, Zamora-Gonzalez J, Diaz-Zagoya JC, Juarez-Oropeza MA. Protective effect of Arthrospira maxima on fatty acid composition in fatty liver. Arch Med Res. 2006;37:479–83.
Article
PubMed
CAS
Google Scholar
Interim guidelines on limits of exposure to 50/60 Hz electric and magnetic fields. International Non-ionizing Radiation Committee of the International Radiation Protection Association. Health Phys. 1990;58:113–22.
Hennebelle M, Balasse L, Latour A, Champeil-Potokar G, Denis S, Lavialle M, et al. Influence of omega-3 fatty acid status on the way rats adapt to chronic restraint stress. PLoS ONE. 2012;7:e42142.
Article
PubMed
PubMed Central
CAS
Google Scholar
Buynitsky T, Mostofsky DI. Restraint stress in biobehavioral research: recent developments. Neurosci Biobehav Rev. 2009;33:1089–98.
Article
PubMed
Google Scholar
Lightman SL. The neuroendocrinology of stress: a never ending story. J Neuroendocr. 2008;20:880–4.
Article
CAS
Google Scholar
Mostafa RM, Mostafa YM, Ennaceur A. Effects of exposure to extremely low-frequency magnetic field of 2 G intensity on memory and corticosterone level in rats. Physiol Behav. 2002;76:589–95.
Article
PubMed
CAS
Google Scholar
Malcher-Lopes R, Franco A, Tasker JG. Glucocorticoids shift arachidonic acid metabolism toward endocannabinoid synthesis: a non-genomic anti-inflammatory switch. Eur J Pharmacol. 2008;583:322–39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Segatto M, Trapani L, Lecis C, Pallottini V. Regulation of cholesterol biosynthetic pathway in different regions of the rat central nervous system. Acta Physiol. 2012;206:62–71.
Article
CAS
Google Scholar
Sun S, Yang S, Mao Y, Jia X, Zhang Z. Reduced cholesterol is associated with the depressive-like behavior in rats through modulation of the brain 5-HT1A receptor. Lipids Health Dis. 2015;14:22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Block RC, Dorsey ER, Beck CA, Brenna JT, Shoulson I. Altered cholesterol and fatty acid metabolism in Huntington disease. J Clin Lipidol. 2010;4:17–23.
Article
PubMed
PubMed Central
Google Scholar
Valenza M, Rigamonti D, Goffredo D, Zuccato C, Fenu S, Jamot L, et al. Dysfunction of the cholesterol biosynthetic pathway in Huntington’s disease. J Neurosci. 2005;25:9932–9.
Article
PubMed
CAS
Google Scholar
Oliveira TG, Chan RB, Bravo FV, Miranda A, Silva RR, Zhou B, et al. The impact of chronic stress on the rat brain lipidome. Mol Psychiatry. 2016;21:80–8.
Article
PubMed
CAS
Google Scholar
Sun GY, Xu J, Jensen MD, Simonyi A. Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res. 2004;45:205–13.
Article
PubMed
CAS
Google Scholar
Mathieu G, Denis S, Lavialle M, Vancassel S. Synergistic effects of stress and omega-3 fatty acid deprivation on emotional response and brain lipid composition in adult rats. Prostaglandins Leukot Essent Fat Acids. 2008;78:391–401.
Article
CAS
Google Scholar
Lee LHW, Tan CH, Lo YL, Farooqui AA, Shui GH, Wenk MR, et al. Brain lipid changes after repetitive transcranial magnetic stimulation: potential links to therapeutic effects? Metabolomics. 2012;8:19–33.
Article
CAS
Google Scholar
Hayashi H, Karten B, Vance DE, Campenot RB, Maue RA, Vance JE. Methods for the study of lipid metabolism in neurons. Anal Biochem. 2004;331:1–16.
Article
PubMed
CAS
Google Scholar
Piacentini MP, Piatti E, Fraternale D, Ricci D, Albertini MC, Accorsi A. Phospholipase C-dependent phosphoinositide breakdown induced by ELF-EMF in Peganum harmala calli. Biochimie. 2004;86:343–9.
Article
PubMed
CAS
Google Scholar
Farooqui AA, Horrocks LA. Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int Rev Neurobiol. 1994;36:267–323.
Article
PubMed
CAS
Google Scholar
Martín Municio A, Miras-Portugal MT. Cell signal transduction, second messengers, and protein phosphorylation in health and disease. New York: Plenum Press; 1994. http://www.loc.gov/catdir/enhancements/fy1006/94038606-t.html.
Dibirdik I, Bofenkamp M, Skeben P, Uckun F. Stimulation of Bruton’s tyrosine kinase (BTK) and inositol 1,4,5-trisphosphate production in leukemia and lymphoma cells exposed to low energy electromagnetic fields. Leuk Lymphoma. 2000;40:149–56.
Article
PubMed
CAS
Google Scholar
Kim SS, Shin HJ, Eom DW, Huh JR, Woo Y, Kim H, et al. Enhanced expression of neuronal nitric oxide synthase and phospholipase C-gamma1 in regenerating murine neuronal cells by pulsed electromagnetic field. Exp Mol Med. 2002;34:53–9.
Article
PubMed
Google Scholar
Clejan S, Ide C, Walker C, Wolf E, Corb M, Beckman B. Electromagnetic field induced changes in lipid second messengers. J Lipid Mediat Cell Signal. 1996;13:301–24.
Article
PubMed
CAS
Google Scholar
Patruno A, Tabrez S, Pesce M, Shakil S, Kamal MA, Reale M. Effects of extremely low frequency electromagnetic field (ELF-EMF) on catalase, cytochrome P450 and nitric oxide synthase in erythro-leukemic cells. Life Sci. 2015;121:117–23.
Article
PubMed
CAS
Google Scholar
Sandyk R, Tsagas N, Anninos PA, Derpapas K. Magnetic fields mimic the behavioral effects of REM sleep deprivation in humans. Int J Neurosci. 1992;65:61–8.
Article
PubMed
CAS
Google Scholar
Szemerszky R, Zelena D, Barna I, Bardos G. Stress-related endocrinological and psychopathological effects of short- and long-term 50 Hz electromagnetic field exposure in rats. Brain Res Bull. 2010;81:92–9.
Article
PubMed
CAS
Google Scholar
Hong I, Garrett A, Maker G, Mullaney I, Rodger J, Etherington SJ. Repetitive low intensity magnetic field stimulation in a neuronal cell line: a metabolomics study. PeerJ. 2018;6:e4501.
Article
PubMed
PubMed Central
Google Scholar
Martinez D, Urban N, Grassetti A, Chang D, Hu MC, Zangen A, et al. Transcranial magnetic stimulation of medial prefrontal and cingulate cortices reduces cocaine self-administration: a pilot study. Front Psychiatry. 2018;9:80.
Article
PubMed
PubMed Central
Google Scholar