Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic–ischemic brain damage. Ann Neurol. 1986;19(2):105–11.
Article
CAS
PubMed
Google Scholar
Choi DW. Excitotoxic Cell Death. J Neurobiol. 1992;23(9):1261–76.
Article
CAS
PubMed
Google Scholar
Moskowitz MA, Lo EH, Iadecola C. The Science of Stroke: Mechanisms in Search of Treatments. Neuron. 2010;67(2):181–98.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tymianski M. Emerging mechanisms of disrupted cellular signaling in brain ischemia. Nat Neurosci. 2011;14(11):1369–73.
Article
CAS
PubMed
Google Scholar
Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1–105.
Article
CAS
PubMed
Google Scholar
Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature. 2000;403(6767):316–21.
Article
CAS
PubMed
Google Scholar
Tzingounis AV, Wadiche JI. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci. 2007;8(12):935–47.
Article
CAS
PubMed
Google Scholar
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405–96.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 2002;1(6):383–6.
Article
CAS
PubMed
Google Scholar
Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115:157–88.
Article
CAS
PubMed
Google Scholar
Bialik S, Kimchi A. The death-associated protein kinases: structure, function, and beyond. Annu Rev Biochem. 2006;75:189–210.
Article
CAS
PubMed
Google Scholar
Shiloh R, Bialik S, Kimchi A. The DAPK family: a structure-function analysis. Apoptosis. 2014;19(2):286–97.
Article
CAS
PubMed
Google Scholar
Nair S, Hagberg H, Krishnamurthy R, Thornton C, Mallard C. Death associated protein kinases: molecular structure and brain injury. Int J Mol Sci. 2013;14(7):13858–72.
Article
PubMed Central
PubMed
Google Scholar
Fujita Y, Yamashita T. Role of DAPK in neuronal cell death. Apoptosis. 2014;19(2):339–45.
Article
CAS
PubMed
Google Scholar
Deiss LP, Feinstein E, Berissi H, Cohen O, Kimchi A. Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev. 1995;9(1):15–30.
Article
CAS
PubMed
Google Scholar
Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–52.
Article
CAS
PubMed
Google Scholar
Bialik S, Kimchi A. Lethal weapons: DAP-kinase, autophagy and cell death DAP-kinase regulates autophagy. Curr Opin Cell Biol. 2009;22(2):199–205.
Article
PubMed
Google Scholar
Bialik S, Kimchi A. The DAP-kinase interactome. Apoptosis. 2014;19(2):316–28.
Article
CAS
PubMed
Google Scholar
Shamloo M, Soriano L, Wieloch T, Nikolich K, Urfer R, Oksenberg D. Death-associated protein kinase is activated by dephosphorylation in response to cerebral ischemia. J Biol Chem. 2005;280(51):42290–9.
Article
CAS
PubMed
Google Scholar
Velentza AV, Wainwright MS, Zasadzki M, Mirzoeva S, Schumacher AM, Haiech J, et al. An aminopyridazine-based inhibitor of a pro-apoptotic protein kinase attenuates hypoxia-ischemia induced acute brain injury. Bioorg Med Chem Lett. 2003;13(20):3465–70.
Article
CAS
PubMed
Google Scholar
Rami A. Autophagy in neurodegeneration: firefighter and/or incendiarist? Neuropathol App Neurobiol. 2009;35(5):449–61.
Article
CAS
Google Scholar
van Rossum DB, Patterson RL, Cheung KH, Barrow RK, Syrovatkina V, Gessell GS, et al. DANGER, a novel regulatory protein of inositol 1,4,5-trisphosphate-receptor activity. J Biol Chem. 2006;281(48):37111–6.
Article
PubMed
Google Scholar
Kang BN, Ahmad AS, Saleem S, Patterson RL, Hester L, Dore S, et al. Death-associated protein kinase-mediated cell death modulated by interaction with DANGER. J Neurosci. 2010;30(1):93–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, et al. DAPK1 Interaction with NMDA Receptor NR2B Subunits Mediates Brain Damage in Stroke. Cell. 2010;140(2):222–34.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010;11(10):682–96.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wroge CM, Hogins J, Eisenman L, Mennerick S. Synaptic NMDA receptors mediate hypoxic excitotoxic death. J Neurosci. 2012;32(19):6732–42.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhou X, Hollern D, Liao J, Andrechek E, Wang H. NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors. Cell Death Dis. 2013;4:e560.
Article
PubMed Central
CAS
PubMed
Google Scholar
Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14(6):383–400.
Article
CAS
PubMed
Google Scholar
Schori H, Yoles E, Wheeler LA, Raveh T, Kimchi A, Schwartz M. Immune-related mechanisms participating in resistance and susceptibility to glutamate toxicity. Eur J Neurosci. 2002;16(4):557–64.
Article
PubMed
Google Scholar
Cull-Candy S, Kelly L, Farrant M. Regulation of Ca2+ −permeable AMPA receptors: synaptic plasticity and beyond. Curr Opin Neurobiol. 2006;16(3):288–97.
Article
CAS
PubMed
Google Scholar
Kwak S, Weiss JH. Calcium-permeable AMPA channels in neurodegenerative disease and ischemia. Curr Opin Neurobiol. 2006;16(3):281–7.
Article
CAS
PubMed
Google Scholar
Liu SJ, Zukin RS. Ca2+ −permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci. 2007;30(3):126–34.
Article
CAS
PubMed
Google Scholar
Lettre G, Hengartner MO. Developmental apoptosis in C. elegans: a complex CEDnario. Nat Rev Mol Cell Biol. 2006;7(2):97–108.
Article
CAS
PubMed
Google Scholar
Conradt B. Genetic control of programmed cell death during animal development. Annu Rev Genet. 2009;43:493–523.
Article
PubMed Central
CAS
PubMed
Google Scholar
Samara C, Tavernarakis N. Autophagy and cell death in Caenorhabditis elegans. Curr Pharm Des. 2008;14(2):97–115.
Article
CAS
PubMed
Google Scholar
Melendez A, Levine B. Autophagy in C. elegans. In: WormBook.org. 2009. p. 1–26.
Google Scholar
Mano I, Driscoll M. C. elegans Glutamate Transporter Deletion Induces AMPA-Receptor/Adenylyl Cyclase 9-Dependent Excitotoxicity. J Neurochem. 2009;108(6):1373–84.
Article
CAS
PubMed
Google Scholar
Mano I, Straud S, Driscoll M. Caenorhabditis elegans Glutamate Transporters Influence Synaptic Function and Behavior at Sites Distant from the Synapse. J Biol Chem. 2007;282(47):34412–9.
Article
CAS
PubMed
Google Scholar
Berger AJ, Hart AC, Kaplan JM. Galphas-induced neurodegeneration in Caenorhabditis elegans. J Neurosci. 1998;18(8):2871–80.
CAS
PubMed
Google Scholar
Mojsilovic-Petrovic J, Nedelsky N, Boccitto M, Mano I, Georgiades SN, Zhou W, et al. FOXO3a is broadly neuroprotective in vitro and in vivo against insults implicated in motor neuron diseases. J Neurosci. 2009;29(25):8236–47.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tehrani N, Del Rosario J, Dominguez M, Kalb R, Mano I. The Insulin/IGF Signaling Regulators Cytohesin/GRP-1 and PIP5K/PPK-1 Modulate Susceptibility to Excitotoxicity in C. elegans. PLoS One. 2014;9(11):e113060.
Article
PubMed Central
PubMed
Google Scholar
Tong A, Lynn G, Ngo V, Wong D, Moseley SL, Ewbank JJ, et al. Negative regulation of Caenorhabditis elegans epidermal damage responses by death-associated protein kinase. Proc Natl Acad Sci U S A. 2009;106(5):1457–61.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kang C, Avery L. Death-associated protein kinase (DAPK) and signal transduction: fine-tuning of autophagy in Caenorhabditis elegans homeostasis. FEBS J. 2010;277(1):66–73.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chuang M, Chisholm A. Insights into the functions of the death associated protein kinases from C. elegans and other invertebrates. Apoptosis. 2014;19(2):392–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kang C, You YJ, Avery L. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev. 2007;21(17):2161–71.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tian JH, Das S, Sheng ZH. Ca2+ −dependent phosphorylation of syntaxin-1A by the death-associated protein (DAP) kinase regulates its interaction with Munc18. J Biol Chem. 2003;278(28):26265–74.
Article
CAS
PubMed
Google Scholar
Südhof Thomas C. Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle. Neuron. 2013;80(3):675–90.
Article
PubMed
Google Scholar
Mahoney TR, Luo S, Nonet ML. Analysis of synaptic transmission in Caenorhabditis elegans using an aldicarb-sensitivity assay. Nat Protocols. 2006;1(4):1772–7.
Article
CAS
Google Scholar
Martin JA, Hu Z, Fenz KM, Fernandez J, Dittman JS. Complexin Has Opposite Effects on Two Modes of Synaptic Vesicle Fusion. Curr Biol. 2011;21(2):97–105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zheng Y, Brockie PJ, Mellem JE, Madsen DM, Maricq AV. Neuronal control of locomotion in C. elegans is modified by a dominant mutation in the GLR-1 ionotropic glutamate receptor. Neuron. 1999;24(2):347–61.
Article
CAS
PubMed
Google Scholar
Burbea M, Dreier L, Dittman JS, Grunwald ME, Kaplan JM. Ubiquitin and AP180 Regulate the Abundance of GLR-1 Glutamate Receptors at Postsynaptic Elements in C. elegans. Neuron. 2002;35(1):107–20.
Article
CAS
PubMed
Google Scholar
Chang HC, Rongo C. Cytosolic tail sequences and subunit interactions are critical for synaptic localization of glutamate receptors. J Cell Sci. 2005;118(Pt 9):1945–56.
Article
CAS
PubMed
Google Scholar
Chow KL, Hall DH, Emmons SW. The mab-21 gene of Caenorhabditis elegans encodes a novel protein required for choice of alternate cell fates. Development. 1995;121(11):3615–26.
CAS
PubMed
Google Scholar
Kimura Y, Corcoran EE, Eto K, Gengyo-Ando K, Muramatsu MA, Kobayashi R, et al. A CaMK cascade activates CRE-mediated transcription in neurons of Caenorhabditis elegans. EMBO Rep. 2002;3(10):962–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 2009;10(3):285–92.
Article
PubMed Central
CAS
PubMed
Google Scholar
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 2010;90(4):1383–435.
Article
CAS
PubMed
Google Scholar
Toth ML, Simon P, Kovacs AL, Vellai T. Influence of autophagy genes on ion-channel-dependent neuronal degeneration in Caenorhabditis elegans. J Cell Sci. 2007;120(6):1134–41.
Article
CAS
PubMed
Google Scholar
Vellai T, Toth ML, Kovacs AL. Janus-faced autophagy: a dual role of cellular self-eating in neurodegeneration? Autophagy. 2007;3(5):461–3.
Article
CAS
PubMed
Google Scholar
Samara C, Syntichaki P, Tavernarakis N. Autophagy is required for necrotic cell death in Caenorhabditis elegans. Cell Death Differ. 2008;15(1):105–12.
Article
CAS
PubMed
Google Scholar
Driscoll M, Gerstbrein B. Dying for a cause: invertebrate genetics takes on human neurodegeneration. Nat Rev Genet. 2003;4(3):181–94.
Article
CAS
PubMed
Google Scholar
Maiuri MC, Le Toumelin G, Criollo A, Rain J-C, Gautier F, Juin P, et al. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J. 2007;26(10):2527–39.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ. Potential therapeutic applications of autophagy. Nat Rev Drug Discov. 2007;6(4):304–12.
Article
CAS
PubMed
Google Scholar
Sudhof TC. The synaptic vesicle cycle. Annu Rev Neurosci. 2004;27:509–47.
Article
PubMed
Google Scholar
Edwards RH. The Neurotransmitter Cycle and Quantal Size. Neuron. 2007;55(6):835–58.
Article
CAS
PubMed
Google Scholar
Saroussi S, Nelson N. Vacuolar H+ −ATPase—an enzyme for all seasons. Pflugers Arch - Eur J Physiol. 2009;457(3):581–7.
Article
CAS
Google Scholar
Wulf G, Finn G, Suizu F, Lu KP. Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat Cell Biol. 2005;7(5):435–41.
Article
CAS
PubMed
Google Scholar
Lu KP, Finn G, Lee TH, Nicholson LK. Prolyl cis-trans isomerization as a molecular timer. Nat Chem Biol. 2007;3(10):619–29.
Article
CAS
PubMed
Google Scholar
Lu KP, Zhou XZ. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol. 2007;8(11):904–16.
Article
CAS
PubMed
Google Scholar
Keune WJ, Jones DR, Divecha N. PtdIns5P and Pin1 in oxidative stress signaling. Ad Biol Regulation. 2013;53(2):179–89.
Article
CAS
Google Scholar
Lu Z, Hunter T. Prolyl isomerase Pin1 in cancer. Cell Res. 2014;24(9):1033–49.
Article
CAS
PubMed
Google Scholar
Westmark PR, Westmark CJ, Wang S, Levenson J, O’Riordan KJ, Burger C, et al. Pin1 and PKMzeta sequentially control dendritic protein synthesis. Sci Signal. 2010;3(112):ra18.
Article
PubMed Central
PubMed
Google Scholar
Sacktor TC. PINing for things past. Sci Signal. 2010;3(112):e9.
Article
Google Scholar
Liou YC, Sun A, Ryo A, Zhou XZ, Yu ZX, Huang HK, et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature. 2003;424(6948):556–61.
Article
CAS
PubMed
Google Scholar
Pastorino L, Sun A, Lu P-J, Zhou XZ, Balastik M, Finn G, et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-[beta] production. Nature. 2006;440(7083):528–34.
Article
CAS
PubMed
Google Scholar
Lee Tae H, Chen C-H, Suizu F, Huang P, Schiene-Fischer C, Daum S, et al. Death-Associated Protein Kinase 1 Phosphorylates Pin1 and Inhibits Its Prolyl Isomerase Activity and Cellular Function. Mol Cell. 2011;42(2):147–59.
Article
PubMed Central
PubMed
Google Scholar
Fasseas MK, Dimou M, Katinakis P. The Caenorhabditis elegans parvulin gene subfamily and their expression under cold or heat stress along with the fkb subfamily. Biochem Biophys Res Commun. 2012;423(3):520–5.
Article
CAS
PubMed
Google Scholar
Keune WJ, Jones DR, Bultsma Y, Sommer L, Zhou XZ, Lu KP, et al. Regulation of phosphatidylinositol-5-phosphate signaling by Pin1 determines sensitivity to oxidative stress. Sci Signal. 2012;5(252):ra86.
Article
PubMed
Google Scholar
Brockie PJ, Mellem JE, Hills T, Madsen DM, Maricq AV. The C. elegans glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion. Neuron. 2001;31(4):617–30.
Article
CAS
PubMed
Google Scholar