Hamburger V: Some aspects of the embryology of behaviour. Quart Rev Biol. 1963, 38: 342-365. 10.1086/403941.
Article
PubMed
CAS
Google Scholar
Hamburger V, Balaban M, Oppenheim RW, Wenger E: Periodic motility of normal and spinal chick embryos between 8 and 17 days of incubation. J Exp Zool. 1965, 159: 1-13. 10.1002/jez.1401590102.
Article
PubMed
CAS
Google Scholar
Cooke IR, Berger PJ: Development of patterns of activity in diaphragm of fetal lamb early in gestation. J Neurobiol. 1996, 30: 385-96. 10.1002/(SICI)1097-4695(199607)30:3<385::AID-NEU7>3.0.CO;2-0.
Article
PubMed
CAS
Google Scholar
Hamburger V, Balaban M: Observations and experiments on spontaneous rhythmical behavior in the chick embryo. Dev Biol. 1963, 7: 533-545. 10.1016/0012-1606(63)90140-4.
Article
Google Scholar
Oppenheim RW: The role of supraspinal input in embryonic motility: A re-examination in the chick. J Comp Neurol. 1975, 160: 37-50. 10.1002/cne.901600104.
Article
PubMed
CAS
Google Scholar
Provine RR, Rogers L: Development of spinal cord bioelectric activity in spinal chick embryos and its behavioural implications. J Neurobiol. 1971, 8: 217-228. 10.1002/neu.480080305.
Article
Google Scholar
Sedlacek J, Doskocil M: Development of spontaneous motility in chick embryos supraspinal control. Physiol Bohem. 1978, 27: 7-14.
CAS
Google Scholar
Robertson SS, Smotherman WP: The neural control of cyclic motor activity in the fetal rat (Rattus norvegicus). Physiol Behav. 1990, 47: 121-126. 10.1016/0031-9384(90)90049-A.
Article
PubMed
CAS
Google Scholar
Landmesser LT, O'Donovan MJ: Activation patterns of embryonic chick hind limb muscles recorded in ovo and in an isolated spinal cord preparation. J Physiol. 1984, 347: 189-204.
Article
PubMed
CAS
PubMed Central
Google Scholar
O'Donovan MJ, Landmesser LT: The development of hindlimb motor activity studied in the isolated spinal cord of the chick embryo. J Neurosci. 1987, 7: 3256-3264.
PubMed
Google Scholar
Nakayama K, Nishimaru H, Kudo N: Developmental changes in 5-hydroxytryptamine-induced rhythmic activity in the spinal cord of rat fetuses in vitro. Neurosci Lett. 2001, 307: 1-4. 10.1016/S0304-3940(01)01913-9.
Article
PubMed
CAS
Google Scholar
Branchereau P, Chapron J, Meyrnad P: Descending 5- hydroxytryptamine raphe inputs repress the expression of serotonergic neurons and slow the maturation of inhibitory systems in mouse embryonic spinal cord. J Neurosci. 2002, 22: 2598-2606.
PubMed
CAS
Google Scholar
Hanson MG, Landmesser LT: Characterization of the circuits that generate spontaneous episodes of activity in the early embryonic mouse spinal cord. J Neurosci. 2003, 23: 587-600.
PubMed
CAS
Google Scholar
Kodama N, Sekiguchi S: The development of spontaneous body movement in prenatal and perinatal mice. Dev Psychobiol. 1984, 17: 139-150. 10.1002/dev.420170205.
Article
PubMed
CAS
Google Scholar
Sharp AA, Ma E, Bekoff A: Developmental changes in leg coordination of the chick at embryonic days 9, 11, and 13: uncoupling of ankle movements. J Neurophysiol. 1999, 82 (5): 2406-2414.
PubMed
CAS
Google Scholar
Berger PJ, Kyriakides MA, Cooke IR: Supraspinal influence on the development of motor behavior in the fetal lamb. J Neurobiol. 1997, 33: 276-88. 10.1002/(SICI)1097-4695(199709)33:3<276::AID-NEU6>3.0.CO;2-Z.
Article
PubMed
CAS
Google Scholar
Windle W, Austin M: Neurofibrillar development in the central nervous system of chick embryos up to 5-days incubation. J Comp Neurol. 1936, 63: 431-463. 10.1002/cne.900630304.
Article
Google Scholar
Okado N, Oppenheim RW: The onset and development of descending pathways to the spinal cord in the chick embryo. J of Comp Neurol. 1985, 232 (2): 143-161. 10.1002/cne.902320202.
Article
CAS
Google Scholar
Glover JC, Petursdottir G: Pathway specificity of reticulospinal and vestibulospinal projections in the 11-day chicken embryo. J Comp Neurol. 1998, 270 (1): 25-38. 10.1002/cne.902700104. 60–21.
Article
Google Scholar
Glover JC, Petursdottir G: Regional specificity of developing reticulospinal, vestibulospinal, and vestibulo-ocular projections in the chicken embryo. J Neurobiol. 1991, 22: 353-376. 10.1002/neu.480220405.
Article
PubMed
CAS
Google Scholar
Shiga T, Kunzi R, Oppenheim RW: Axonal projections and synaptogenesis by supraspinal descending neurons in the spinal cord of the chick embryo. J Comp Neurol. 1991, 305: 83-95. 10.1002/cne.903050109.
Article
PubMed
CAS
Google Scholar
Chedotal A, Pourquie O, Sotelo C: Initial tract formation in the brain of the chick embryo: selective expression of the BEN/SC1/DM-GRASP cell adhesion molecule. Eur J Neurosci. 1995, 7: 198-212. 10.1111/j.1460-9568.1995.tb01056.x.
Article
PubMed
CAS
Google Scholar
Auclair F, Belanger MC, Marchand R: Ontogenetic study of early brain stem projections to the spinal cord in the rat. Brain Res Bull. 1993, 30: 281-289. 10.1016/0361-9230(93)90256-B.
Article
PubMed
CAS
Google Scholar
Auclair F, Marchand R, Glover JC: Regional patterning of reticulospinal and vestibulospinal neurons in the hindbrain of mouse and rat embryos. J Comp Neurol. 1999, 411: 288-300. 10.1002/(SICI)1096-9861(19990823)411:2<288::AID-CNE9>3.0.CO;2-U.
Article
PubMed
CAS
Google Scholar
Kudo N, Furukawa F, Okado N: Development of descending fibers to the rat embryonic spinal cord. Neurosci Res. 1993, 16: 131-141. 10.1016/0168-0102(93)90080-A.
Article
PubMed
CAS
Google Scholar
de Boer-van Huizen RT, ten Donkelaar JH: Early development of descending supraspinal pathways: a tracing study in fixed and isolated rat embryos. Anat Embryol (Berl). 1999, 199: 539-547. 10.1007/s004290050251.
Article
CAS
Google Scholar
Martin RF, Jordan LM, Willis WD: Differential projections of cat medullary raphe neurons demonstrated by retrograde labelling following spinal cord lesions. J Comp Neurol. 1978, 182: 77-88. 10.1002/cne.901820106.
Article
PubMed
CAS
Google Scholar
Martin GF, Cabana T, DiTirro FJ, Ho RH, Humbertson AO: The development of descending spinal connections. Studies using the North American opossum. Prog Brain Res. 1982, 57: 131-144.
Article
PubMed
CAS
Google Scholar
Martin GF, Ghooray G, Ho RH, Pindzola RR, Xu XM: The origin of serotoninergic projections to the lumbosacral spinal cord at different stages of development in the North American opossum. Dev Brain Res. 1991, 58 (2): 203-213. 10.1016/0165-3806(91)90006-5.
Article
CAS
Google Scholar
Martin GF, Pindzola RR, Xu XM: The origins of descending projections to the lumbar spinal cord at different stages of development in the North American opossum. Brain Res Bull. 1993, 30: 303-317. 10.1016/0361-9230(93)90258-D.
Article
PubMed
CAS
Google Scholar
Humbertson AO, Cabana T, Ditirro FJ, Ho RH, Martin GF: Development of raphe-spinal connections in the North American opossum. Brain Res Bull. 1982, 9: 627-633. 10.1016/0361-9230(82)90166-6.
Article
PubMed
CAS
Google Scholar
Cabana T, Martin GF: The origin of brain stem-spinal projections at different stages of development in the North American opossum. Brain Res. 1981, 254: 163-8.
Article
PubMed
CAS
Google Scholar
Cabana T, Martin GF: Developmental sequence in the origin of descending spinal pathways. Studies using retrograde transport techniques in the North American opossum (Didelphis virginiana). Brain Res. 1984, 317: 247-63.
Article
PubMed
CAS
Google Scholar
Newman DB, Cruce WL, Bruce LL: The sources of supraspinal afferents to the spinal cord in a variety of limbed reptiles. I. Reticulospinal systems. J Comp Neurol. 1983, 215: 17-32. 10.1002/cne.902150103.
Article
PubMed
CAS
Google Scholar
Forehand CJ, Farel PB: Spinal cord development in anuran larvae: I. Primary and secondary neurons. J Comp Neurol. 1982, 209: 386-94. 10.1002/cne.902090408.
Article
PubMed
CAS
Google Scholar
ten Donkelaar HJ: Organization of descending pathways to the spinal cord in amphibians and reptiles. Prog Brain Res. 1982, 57: 25-67.
Article
PubMed
CAS
Google Scholar
ten Donkelaar HJ, de Boer-van Huizen R: Observations on the development of descending pathways from the brain stem to the spinal cord in the clawed toad Xenopus laevis. Anat Embryol (Berl). 1982, 163: 461-73. 10.1007/BF00305559.
Article
CAS
Google Scholar
ten Donkelaar HJ, de Boer-van Huizen R, van der Linden JA: Early development of rubrospinal and cerebellorubral projections in Xenopus laevis. Brain Res Dev Brain Res. 1991, 58: 297-300. 10.1016/0165-3806(91)90019-F.
Article
PubMed
CAS
Google Scholar
van Mier P, ten Donkelaar HJ: Early development of descending pathways from the brain stem to the spinal cord in Xenopus laevis. Anat Embryol (Berl). 1984, 170: 295-306. 10.1007/BF00318733.
Article
CAS
Google Scholar
Naujoks-Manteuffel C, Manteuffel G: Origins of descending projections to the medulla oblongata and rostral medulla spinalis in the urodele Salamandra salamandra (amphibia). J Comp Neurol. 1988, 273: 187-206. 10.1002/cne.902730205.
Article
PubMed
CAS
Google Scholar
Sanchez-Camacho C, Marin O, ten Donkelaar HJ, Gonzalez A: Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin. J Comp Neurol. 2001, 434: 186-208. 10.1002/cne.1172.
Article
PubMed
CAS
Google Scholar
Sanchez-Camacho C, Marin O, Lopez JM, Moreno N, Smeets WJ, ten Donkelaar HJ, Gonzalez A: Origin and development of descending catecholaminergic pathways to the spinal cord in amphibians. Brain Res Bull. 2002, 57: 325-30. 10.1016/S0361-9230(01)00671-2.
Article
PubMed
CAS
Google Scholar
Kimmel CB, Powell SL, Metcalfe WK: Brain neurons which project to the spinal cord in young larvae of the zebrafish. J Comp Neurol. 1982, 205: 112-127. 10.1002/cne.902050203.
Article
PubMed
CAS
Google Scholar
Mendelson B: Development of reticulospinal neurons of the zebrafish. II. Early axonal outgrowth and cell body position. J Comp Neurol. 1986, 251: 172-184. 10.1002/cne.902510204.
Article
PubMed
CAS
Google Scholar
El-Haddad MA, Chao CR, Ross MG: N-methyl-D-aspartate glutamate receptor mediates spontaneous and angiotensin II-stimulated ovine fetal swallowing. J Soc Gynecol Investig. 2005, 12: 504-509. 10.1016/j.jsgi.2005.06.003.
Article
PubMed
CAS
Google Scholar
Reix P, Fortier PH, Niyonsenga T, Arsenault J, Letourneau P, Praud JP: Non-nutritive swallowing and respiration coordination in full-term newborn lambs. Respir Physiol Nuerobiol. 2003, 134 (3): 209-218. 10.1016/S1569-9048(02)00220-3.
Article
Google Scholar
Romanski KW: Ovine model for clear-cut study on the role of cholecystokinin in antral, small intestinal and gallbladder motility. Pol J Pharmacol. 2004, 56: 247-256.
Article
PubMed
CAS
Google Scholar
Stockx EM, Anderson CR, Murphy SM, Cooke IRC, Berger PJ: A map of the major nuclei of the fetal sheep brainstem. Brain Res Bull. 2007, 71: 355-364. 10.1016/j.brainresbull.2006.08.018.
Article
PubMed
Google Scholar
Luppi P-H, Fort P, Jouvet M: Iontophoretic application of unconjugated cholera toxin B subunit (CTb) combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrogradely labeled neurons. Brain Res. 1990, 534: 209-224. 10.1016/0006-8993(90)90131-T.
Article
PubMed
CAS
Google Scholar
Saper CB, Swanson LW, Cowan WM: Some efferent connections of the rostral hypothalamus in the squirrel monkey (Saimiri sciureus) and cat. J Comp Neurol. 1979, 184: 205-242. 10.1002/cne.901840202.
Article
PubMed
CAS
Google Scholar
Cechetto DF, Saper CB: Neurochemical organization of the hypothalamic projection to the spinal cord in the rat. J Comp Neurol. 1988, 272: 579-604. 10.1002/cne.902720410.
Article
PubMed
CAS
Google Scholar
Karimi-Abdolrezaee S, Verge VM, Schreyer DJ: Developmental down-regulation of GAP-43 expression and timing of target contact in rat corticospinal neurons. Exp Neurol. 2002, 176: 390-401. 10.1006/exnr.2002.7964.
Article
PubMed
CAS
Google Scholar
Higashi S, Molnar Z, Kurotani T, Toyama K: Prenatal development of neural excitation in rat thalamocortical projections studied by optical recording. Neurosci. 2002, 115 (4): 1231-1246. 10.1016/S0306-4522(02)00418-9.
Article
CAS
Google Scholar
Hall ZW, Sanes JR: Synaptic structure and development: The neuromuscular junction. Cell. 1993, 99-121. 10.1016/S0092-8674(05)80031-5. 72 suppl
Gonzalez-Islas C, Wenner P: Spontaneous network activity in the embryonic spinal cord regulates AMPAergic and GABAergic synaptic strength. Neuron. 2006, 49: 563-575. 10.1016/j.neuron.2006.01.017.
Article
PubMed
CAS
Google Scholar
Killman V, van Rossum MC, Turrigiano CG: Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABA(A) receptors clustered at neocortical synapses. J Neurosci. 2002, 22: 1328-1337.
Google Scholar
Nudo RJ, Masterton RB: Descending pathways to the spinal cord: a comparative study of 22 mammals. J Comp Neurol. 1988, 277: 53-79. 10.1002/cne.902770105.
Article
PubMed
CAS
Google Scholar
Bermejo PE, Jimenez CE, Torres CV, Avendano C: Quantitative stereological evaluation of the gracile and cuneate nuclei and their projection neurons in the rat. J Comp Neurol. 2003, 463: 419-433. 10.1002/cne.10747.
Article
PubMed
Google Scholar
Paxinos G, Watson C: The rat brain. In stereotaxic coordinates. 1988, Academic Press San Diego, California
Google Scholar
Rubertone JA, Mehler WR, Cox GE: The intrinsic organization of the vestibular complex: evidence for internuclear connectivity. Brain Res. 1983, 263: 137-141. 10.1016/0006-8993(83)91210-6.
Article
PubMed
CAS
Google Scholar
Steiger HJ, Buttner-Ennever JA: Oculomotor nucleus afferents in the monkey demonstrated with horseradish peroxidase. Brain Res. 1979, 160: 1-15. 10.1016/0006-8993(79)90596-1.
Article
PubMed
CAS
Google Scholar
Wang XM, Xu XM, Qin YQ, Martin GF: The origins of supraspinal projections to the cervical and lumbar spinal cord at different stages of development in the gray short-tailed Brazilian opossum, Monodelphis domestica. Brain Res Dev Brain Res. 1992, 68: 203-216. 10.1016/0165-3806(92)90062-2.
Article
PubMed
CAS
Google Scholar