Pickel VM, Nirenberg MJ, Milner TA: Ultrastructural view of central catecholaminergic transmission: immunocytochemical localization of synthesizing enzymes, transporters and receptors. Journal of Neurocytology. 1996, 25 (12): 843-856. 10.1007/BF02284846.
Article
CAS
PubMed
Google Scholar
Smith AD, Bolam JP: The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends in Neurosciences. 1990, 13: 259-265. 10.1016/0166-2236(90)90106-K.
Article
CAS
PubMed
Google Scholar
Pennartz CM, Groenewegen HJ, Lopes da Silva FH: The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Progress in Neurobiology. 1994, 42 (6): 719-761. 10.1016/0301-0082(94)90025-6.
Article
CAS
PubMed
Google Scholar
Koos T, Tepper JM: Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nature Neuroscience. 1999, 2 (5): 467-472. 10.1038/8138.
Article
CAS
PubMed
Google Scholar
Wilson CJ: Basal ganglia. The Synaptic Organization of the Brain. Edited by: Shepherd GM. 2004, New York , Oxford University Press, 361-413. Fifth
Chapter
Google Scholar
Kawaguchi Y, Wilson CJ, Emson PC: Projections subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. Journal of Neuroscience. 1990, 10: 3421-3438.
CAS
PubMed
Google Scholar
Wilson CJ, Groves PM: Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular inject of horseradish peroxidase. Journal of Comparative Neurology. 1980, 194 (3): 599-615. 10.1002/cne.901940308.
Article
CAS
PubMed
Google Scholar
Smith Y, Bevan MD, Shink E, Bolam JP: Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience. 1998, 86 (2): 353-387. 10.1016/S0306-4522(98)00004-9.
Article
CAS
PubMed
Google Scholar
Guzman JN, Hernandez A, Galarraga E, Tapia D, Laville A, Vergara R, Aceves J, Bargas J: Dopaminergic modulation of axon collaterals interconnecting spiny neurons of the rat striatum. J Neurosci. 2003, 23 (26): 8931-8940.
CAS
PubMed
Google Scholar
Tecuapetla F, Carrillo-Reid L, Guzman JN, Galarraga E, Bargas J: Different inhibitory inputs onto neostriatal projection neurons as revealed by field stimulation. J Neurophysiol. 2005, 93 (2): 1119-1126. 10.1152/jn.00657.2004.
Article
PubMed
Google Scholar
Plenz D: When inhibition goes incognito: feedback interaction between spiny projection neurons in striatal function. Trends Neurosci. 2003, 26 (8): 436-443. 10.1016/S0166-2236(03)00196-6.
Article
CAS
PubMed
Google Scholar
Tunstall MJ, Oorschot DE, Kean A, Wickens JR: Inhibitory interactions between spiny projection neurons in the rat striatum. J Neurophysiol. 2002, 88 (3): 1263-1269.
PubMed
Google Scholar
Czubayko U, Plenz D: Fast synaptic transmission between striatal spiny projection neurons. Proc Natl Acad Sci U S A. 2002, 99 (24): 15764-15769. 10.1073/pnas.242428599.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gustafson N, Gireesh-Dharmaraj E, Czubayko U, Blackwell KT, Plenz D: A comparative voltage and current-clamp analysis of feedback and feedforward synaptic transmission in the striatal microcircuit in vitro. J Neurophysiol. 2006, 95 (2): 737-752. 10.1152/jn.00802.2005.
Article
PubMed
Google Scholar
Taverna S, van Dongen YC, Groenewegen HJ, Pennartz CMA: Direct physiological evidence for synaptic connectivity between medium-sized spiny neurons in rat nucleus accumbens in situ. J Neurophysiol. 2004, 91 (3): 1111-1121. 10.1152/jn.00892.2003.
Article
PubMed
Google Scholar
Koos T, Tepper JM, Wilson CJ: Comparison of IPSCs evoked by spiny and fast-spiking neurons in the neostriatum. J Neurosci. 2004, 24 (36): 7916-7922. 10.1523/JNEUROSCI.2163-04.2004.
Article
CAS
PubMed
Google Scholar
Venance L, Glowinski J, Giaume C: Electrical and chemical transmission between striatal GABAergic output neurones in rat brain slices. J Physiol. 2004, 559 (Pt 1): 215-230. 10.1113/jphysiol.2004.065672.
Article
PubMed Central
CAS
PubMed
Google Scholar
Taverna S, Canciani B, Pennartz CM: Dopamine D1-receptors modulate lateral inhibition between principal cells of the nucleus accumbens. J Neurophysiol. 2005, 93 (3): 1816-1819. 10.1152/jn.00672.2004.
Article
CAS
PubMed
Google Scholar
Surmeier DJ, Reiner A, Levine MS, Ariano MA: Are neostriatal dopamine receptors co-localized?. Trends in Neurosciences. 1993, 16 (8): 299-305. 10.1016/0166-2236(93)90103-S.
Article
CAS
PubMed
Google Scholar
Neve KA, Neve RL: Molecular biology of dopamine receptors. The Dopamine Receptors. Edited by: Neve KA, Neve RL. 1997, Totowa, NJ , Humana Press, 27-76.
Chapter
Google Scholar
Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, Sibley DR: D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science. 1990, 250: 1429-1432.
Article
CAS
PubMed
Google Scholar
Le Moine C, Bloch B: D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. Journal of Comparative Neurology. 1995, 355 (3): 418-426. 10.1002/cne.903550308.
Article
CAS
PubMed
Google Scholar
Surmeier DJ, Song WJ, Yan Z: Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. Journal of Neuroscience. 1996, 16 (20): 6579-6591.
CAS
PubMed
Google Scholar
Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N: A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature. 2003, 425 (6961): 917-925. 10.1038/nature02033.
Article
CAS
PubMed
Google Scholar
Cameron DL, Williams JT: Dopamine D1 receptors facilitate transmitter release. Nature. 1993, 366: 344-347. 10.1038/366344a0.
Article
CAS
PubMed
Google Scholar
Radnikow G, Misgeld U: Dopamine D1 receptors facilitate GABAA synaptic currents in the rat substantia nigra pars reticulata. Journal of Neuroscience. 1998, 18 (6): 2009-2016.
CAS
PubMed
Google Scholar
Mengual E, Pickel VM: Ultrastructural immunocytochemical localization of the dopamine D2 receptor and tyrosine hydroxylase in the rat ventral pallidum. Synapse. 2002, 43: 151–162-10.1002/syn.10033.
Article
PubMed
Google Scholar
Cooper AJ, Stanford IM: Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal GABAA IPSCs in vitro. Neuropharmacology. 2001, 41: 62–71-10.1016/S0028-3908(01)00038-7.
Article
PubMed
Google Scholar
Wong AC, Shetreat ME, Clarke JO, Rayport S: D1- and D2-like dopamine receptors are colocalized on the presynaptic varicosities of striatal and nucleus accumbens neurons in vitro. Neuroscience. 1999, 89 (1): 221-233. 10.1016/S0306-4522(98)00284-X.
Article
CAS
PubMed
Google Scholar
Bertorello AM, Hopfield JF, Aperia A, Greengard P: Inhibition by dopamine of (Na++K+)ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism. Nature. 1990, 347 (6291): 386-388. 10.1038/347386a0.
Article
CAS
PubMed
Google Scholar
Aizman O, Brismar H, Uhlén P, Zettergren E, Levey AI, Forssberg H, Greengard P, Aperia A: Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nature Neuroscience. 2000, 3 (3): 226-230. 10.1038/72929.
Article
CAS
PubMed
Google Scholar
Wu Y, Richard S, Parent A: The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat. Neuroscience Research. 2000, 38 (1): 49-62. 10.1016/S0168-0102(00)00140-1.
Article
CAS
PubMed
Google Scholar
Parent A, Sato F, Wu Y, Gauthier J, Levesque M, Parent M: Organization of the basal ganglia: the importance of axonal collateralization. Trends Neurosci. 2000, 23 (10 Suppl): S20-7. 10.1016/S1471-1931(00)00022-7.
Article
CAS
PubMed
Google Scholar
Geldwert D, Rayport S: Dopaminergic modulation of nucleus accumbens GABA synapses. Society for Neuroscience Abstracts. 1996, 22: 506.
Google Scholar
Feldman IG, Rayport S: Dopamine presynaptically inhibits n. accumbens GABA synapses via D1- and D2-like receptors: Visualization by FM1-43 destaining in postnatal cell culture. Society for Neuroscience Abstracts. 1998, 24: 349.
Google Scholar
Rayport S, Geldwert D, Norris J: Dopamine differentially modulates medium-spiny GABA neuron synapses. Soc Neurosci Abstr. 2001, 27.
Google Scholar
Shetreat ME, Lin L, Wong AC, Rayport S: Visualization of D1 dopamine receptors on living nucleus accumbens neurons and their colocalization with D2 receptors. Journal of Neurochemistry. 1996, 66 (4): 1475-1482.
Article
CAS
PubMed
Google Scholar
Shi WX, Rayport S: GABA synapses formed in vitro by local axon collaterals of nucleus accumbens neurons. Journal of Neuroscience. 1994, 14 (7): 4548-4560.
CAS
PubMed
Google Scholar
Ueno S, Bracamontes J, Zorumski C, Weiss DS, Steinbach JH: Bicuculline and gabazine are allosteric inhibitors of channel opening of the GABAA receptor. J Neurosci. 1997, 17 (2): 625-634.
CAS
PubMed
Google Scholar
Guenther E, Wilsch V, Zrenner E: Inhibitory action of haloperidol, spiperone and SCH23390 on calcium currents in rat retinal ganglion cells. Neuroreport. 1994, 5 (11): 1373-1376.
CAS
PubMed
Google Scholar
Davies CH, Davies SN, Collingridge GL: Paired-pulse depression of monosynaptic GABA-mediated inhibitory postsynaptic responses in rat hippocampus. J Physiol (Lond). 1990, 424: 513-531.
Article
CAS
Google Scholar
Wilcox KS, Dichter MA: Paired pulse depression in cultured hippocampal neurons is due to a presynaptic mechanism independent of GABAB autoreceptor activation. Journal of Neuroscience. 1994, 14 (3 PT 2): 1775-1788.
CAS
PubMed
Google Scholar
Betz WJ, Mao F, Smith CB: Imaging exocytosis and endocytosis. Current Opinion in Neurobiology. 1996, 6: 365-371. 10.1016/S0959-4388(96)80121-8.
Article
CAS
PubMed
Google Scholar
Isaacson JS, Hille B: GABAB-mediated presynaptic inhibition of excitatory transmission and synaptic vesicle dynamics in cultured hippocampal neurons. Neuron. 1997, 18 (1): 143-152. 10.1016/S0896-6273(01)80053-2.
Article
CAS
PubMed
Google Scholar
Ariano MA, Sibley DR: Dopamine receptor distribution in the rat CNS: elucidation using anti-peptide antisera directed against D1A and D3 subtypes. Brain Research. 1994, 649: 95-110. 10.1016/0006-8993(94)91052-9.
Article
CAS
PubMed
Google Scholar
Ariano MA, Fisher RS, Smyk-Randall E, Sibley DR, Levine MS: D2 dopamine receptor distribution in the rodent CNS using anti-peptide antisera. Brain Research. 1993, 609: 71-80. 10.1016/0006-8993(93)90857-J.
Article
CAS
PubMed
Google Scholar
Hersch SM, Ciliax BJ, Gutekunst CA, Rees HD, Heilman CJ, Yung KKL, Bolam JP, Ince E, Yi H, Levey AI: Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. Journal of Neuroscience. 1995, 15 (7 PT 2): 5222-5237.
CAS
PubMed
Google Scholar
Farooqui SM, Brock JW, Hamdi A, Prasad C: Antibodies against synthetic peptides predicted from the nucleotide sequence of D2 receptor recognize native dopamine receptor protein in rat striatum. Journal of Neurochemistry. 1991, 57: 1363-1369.
Article
CAS
PubMed
Google Scholar
Marty A, Llano I: Excitatory effects of GABA in established brain networks. Trends Neurosci. 2005, 28 (6): 284-289. 10.1016/j.tins.2005.04.003.
Article
CAS
PubMed
Google Scholar
Onn SP, Grace AA: Alterations in electrophysiological activity and dye coupling of striatal spiny and aspiny neurons in dopamine-denervated rat striatum recorded in vivo. Synapse. 1999, 33 (1): 1-15. 10.1002/(SICI)1098-2396(199907)33:1<1::AID-SYN1>3.0.CO;2-G.
Article
CAS
PubMed
Google Scholar
Auger C, Kondo S, Marty A: Multivesicular release at single functional synaptic sites in cerebellar stellate and basket cells. J Neurosci. 1998, 18 (12): 4532-4547.
CAS
PubMed
Google Scholar
Mizuno T, Schmauss C, Rayport S: Distinct roles of presynaptic dopamine receptors in the differential modulation of the intrinsic synapses of striatal medium-spiny neurons. In submission.
Huang ZJ: Subcellular organization of GABAergic synapses: role of ankyrins and L1 cell adhesion molecules. Nat Neurosci. 2006, 9 (2): 163-166. 10.1038/nn1638.
Article
CAS
PubMed
Google Scholar
Stelzer A, Kay AR, Wong RK: GABAA-receptor function in hippocampal cells is maintained by phosphorylation factors. Science. 1988, 241 (4863): 339-341.
Article
CAS
PubMed
Google Scholar
Pouzat C, Marty A: Somatic recording of GABAergic autoreceptor current in cerebellar stellate and basket cells. J Neurosci. 1999, 19 (5): 1675-1690.
CAS
PubMed
Google Scholar
Waldvogel HJ, Billinton A, White JH, Emson PC, Faull RL: Comparative cellular distribution of GABAA and GABAB receptors in the human basal ganglia: immunohistochemical colocalization of the α1 subunit of the GABAA receptor, and the GABABR1 and GABABR2 receptor subunits. J Comp Neurol. 2004, 470 (4): 339-356. 10.1002/cne.20005.
Article
CAS
PubMed
Google Scholar
Zhang W, Klimek V, Farley JT, Zhu MY, Ordway GA: α2C adrenoceptors inhibit adenylyl cyclase in mouse striatum: potential activation by dopamine. J Pharmacol Exp Ther. 1999, 289 (3): 1286-1292.
CAS
PubMed
Google Scholar
Gazi L, Nickolls SA, Strange PG: Functional coupling of the human dopamine D2 receptor with Gαi1, Gαi2, Gαi3 and Gαo G proteins: evidence for agonist regulation of G protein selectivity. Br J Pharmacol. 2003, 138 (5): 775-786. 10.1038/sj.bjp.0705116.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mottola DM, Laiter S, Watts VJ, Tropsha A, Wyrick SD, Nichols DE, Mailman RB: Conformational analysis of D1 dopamine receptor agonists: Pharmacophore assessment and receptor mapping. Journal of Medicinal Chemistry. 1996, 39 (1): 285-296. 10.1021/jm9502100.
Article
CAS
PubMed
Google Scholar
Wiens BL, Nelson CS, Neve KA: Contribution of serine residues to constitutive and agonist-induced signaling via the D2S dopamine receptor: evidence for multiple, agonist- specific active conformations. Mol Pharmacol. 1998, 54 (2): 435-444.
CAS
PubMed
Google Scholar
Gay EA, Urban JD, Nichols DE, Oxford GS, Mailman RB: Functional selectivity of D2 receptor ligands in a Chinese hamster ovary hD2L cell line: evidence for induction of ligand-specific receptor states. Mol Pharmacol. 2004, 66 (1): 97-105. 10.1124/mol.66.1.97.
Article
CAS
PubMed
Google Scholar
Carter-Russell HR, Song WJ, Surmeier DJ: Coordinated expression of dopamine receptors (D1-D5) in single neostriatal neurons. Society for Neuroscience Abstracts. 1995, 21: 1425.
Google Scholar
Yasumoto S, Tanaka E, Hattori G, Maeda H, Higashi H: Direct and indirect actions of dopamine on the membrane potential in medium spiny neurons of the mouse neostriatum. J Neurophysiol. 2002, 87 (3): 1234-1243.
CAS
PubMed
Google Scholar
Flores-Hernandez J, Hernandez S, Snyder GL, Yan Z, Fienberg AA, Moss SJ, Greengard P, Surmeier DJ: D1 dopamine receptor activation reduces GABAA receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade. J Neurophysiol. 2000, 83 (5): 2996-3004.
CAS
PubMed
Google Scholar
Fisher RS, Levine MS, Sibley DR, Ariano MA: D2 dopamine receptor protein location: Golgi impregnation-gold toned and ultrastructural analysis of the rat neostriatum. Journal of Neuroscience Research. 1994, 38 (5): 551-564. 10.1002/jnr.490380508.
Article
CAS
PubMed
Google Scholar
Sesack SR, Aoki C, Pickel VM: Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. Journal of Neuroscience. 1994, 14: 88-106.
CAS
PubMed
Google Scholar
Yung KKL, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI: Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience. 1995, 65 (3): 709-730. 10.1016/0306-4522(94)00536-E.
Article
CAS
PubMed
Google Scholar
Delle Donne KT, Sesack SR, Pickel VM: Ultrastructural immunocytochemical localization of the dopamine D2 receptor within GABAergic neurons of the rat striatum. Brain Research. 1997, 746 (1-2): 239-255. 10.1016/S0006-8993(96)01226-7.
Article
CAS
PubMed
Google Scholar
Yung KK, Bolam JP: Localization of dopamine D1 and D2 receptors in the rat neostriatum: Synaptic interaction with glutamate- and GABA-containing axonal terminals. Synapse. 2000, 38 (4): 413-420. 10.1002/1098-2396(20001215)38:4<413::AID-SYN6>3.0.CO;2-V.
Article
CAS
PubMed
Google Scholar
Wang H, Pickel VM: Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus. J Comp Neurol. 2002, 442 (4): 392-404. 10.1002/cne.10086.
Article
CAS
PubMed
Google Scholar
Benoit-Marand M, Borrelli E, Gonon F: Inhibition of dopamine release via presynaptic D2 receptors: time course and functional characteristics in vivo. J Neurosci. 2001, 21 (23): 9134-9141.
CAS
PubMed
Google Scholar
Bamford NS, Zhang H, Schmitz Y, Wu NP, Cepeda C, Levine MS, Schmauss C, Zakharenko SS, Zablow L, Sulzer D: Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron. 2004, 42 (4): 653-663. 10.1016/S0896-6273(04)00265-X.
Article
CAS
PubMed
Google Scholar
Delgado A, Sierra A, Querejeta E, Valdiosera RF, Aceves J: Inhibitory control of the GABAergic transmission in the rat neostriatum by D2 dopamine receptors. Neuroscience. 2000, 95 (4): 1043–1048.
PubMed
Google Scholar
Masson J, Lee JY, Javitch JA, Rayport S: Presynaptic targeting of D2 dopamine receptors in nucleus accumbens neurons in vitro. Soc Neurosci Abstr. 1999, 25: 954.
Google Scholar
Banerjee P, Joo JB, Buse JT, Dawson G: Differential solubilization of lipids along with membrane proteins by different classes of detergents. Chem Phys Lipids. 1995, 77 (1): 65-78. 10.1016/0009-3084(95)02455-R.
Article
CAS
PubMed
Google Scholar
Seutin V, Johnson SW: Recent advances in the pharmacology of quaternary salts of bicuculline. Trends Pharmacol Sci. 1999, 20 (7): 268-270. 10.1016/S0165-6147(99)01334-6.
Article
CAS
PubMed
Google Scholar
Bookman RJ: PulseControl 5.0. 1996, http://chroma.med.miami.edu/cap
Google Scholar