Gage FH: Mammalian neural stem cells. Science. 2000, 287: 1433-1438. 10.1126/science.287.5457.1433.
Article
CAS
PubMed
Google Scholar
Caldwell MA, Wilkie N, He X, Pollack S, Marshall G, Wafford KA, Svendsen CN: Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat Biotechnol. 2001, 19: 475-479. 10.1038/88158.
Article
CAS
PubMed
Google Scholar
Okano H: Stem cell biology of the central nervous system. J Neurosci Res. 2002, 69: 698-707. 10.1002/jnr.10343.
Article
CAS
PubMed
Google Scholar
Alvarez-Buylla A, Lim DA: For the long run: maintaining germinal niches in the adult brain. Neuron. 2004, 41: 683-686. 10.1016/S0896-6273(04)00111-4.
Article
CAS
PubMed
Google Scholar
Maslov AY, Barone TA, Plunkett RJ, Pruitt SC: Neural stem cell detection, Characterization, and age-related changes in the subventricular zone of mice. J Neurosci. 2004, 24: 1726-1733. 10.1523/JNEUROSCI.4608-03.2004.
Article
CAS
PubMed
Google Scholar
Gritti A, Frolichsthal-Schoeller P, Galli R, Parati EA, Cova L, Pagano SF, Bjornson CR, Vescovi AL: Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J Neurosci. 1999, 19: 3287-3297.
CAS
PubMed
Google Scholar
Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der Kooy D: Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol. 1999, 208: 166-188. 10.1006/dbio.1998.9192.
Article
CAS
PubMed
Google Scholar
Ciccolini F: Identification of two distinct types of multipotent neural precursors that appear sequentially during CNS development. Cell Mol Neurosci. 2001, 17: 895-905. 10.1006/mcne.2001.0980.
Article
CAS
Google Scholar
Stoker WA, Dutta A: Protein tyrosine phosphatases and neural development. Bioessays. 1998, 20: 463-472. 10.1002/(SICI)1521-1878(199806)20:6<463::AID-BIES4>3.0.CO;2-N.
Article
CAS
PubMed
Google Scholar
Stoker WA: Receptor tyrosine phosphatases in axon growth and guidance. Curr Opin Neurobiol. 2001, 11: 95-102. 10.1016/S0959-4388(00)00179-3.
Article
CAS
PubMed
Google Scholar
Johnson KG, McKinnell IW, Stoker AW, Holt CE: Receptor protein tyrosine phosphatases regulate retinal ganglion cell axon outgrowth in the developing Xenopus visual system. J Neurobiol. 2001, 49: 99-117. 10.1002/neu.1068.
Article
CAS
PubMed
Google Scholar
Ackley BD, Harrington RJ, Hudson ML, Williams L, Kenyon CJ, Chisholm AD, Jin Y: The two isoforms of the caenorhabditis elegans leukocyte-common antigen related receptor tyrosine phosphatase PTP-3 function independently in axon guidance and synapse formation. J Neurosci. 2005, 17: 7528-7517.
Google Scholar
Yeo TT, Yang T, Massa SM, Zhang JS, Honkaniemi J, Butcher LL, Longo FM: Deficient LAR expression decreases basal forebrain cholinergic neuronal size and hippocampal cholinergic innervation. J Neurosci Res. 1997, 47: 348-360. 10.1002/(SICI)1097-4547(19970201)47:3<348::AID-JNR13>3.0.CO;2-Y.
Article
CAS
PubMed
Google Scholar
Van Lieshout EM, Van Der Heijden I, Hendriks WJ, Van Der Zee CE: A decrease in size and number of basal forebrain cholinergic neurons is paralleled by diminished hippocampal cholinergic innervation in mice lacking leukocyte common antigen-related protein tyrosine phosphatase activity. Neurosci. 2001, 102: 833-841. 10.1016/S0306-4522(00)00526-1.
Article
CAS
Google Scholar
Anderson KL, Nelson SL, Perkin HB, Smith KA, Klemsz MJ, Torbett BE: PU.1 is a lineage-specific regulator of tyrosine phosphatase CD45. J Biol Chem. 2001, 276: 7637-7642. 10.1074/jbc.M009133200.
Article
CAS
PubMed
Google Scholar
Yan H, Grossman A, Wang H, D'Eustachio P, Mossie K, Musacchio JM, Silvennoinen O, Schlessinger J: A novel receptor tyrosine phosphatase-sigma that is highly expressed in the nervous system. J Biol Chem. 1993, 268: 24880-24886.
CAS
PubMed
Google Scholar
Zhang WR, Hashimoto N, Ahmad F, Ding W, Goldstein BJ: Molecular cloning and expression of a unique receptor-like protein-tyrosine-phosphatase in the leucocyte-common-antigen-related phosphate family. Biochem J. 1994, 302: 39-47.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aricescu AR, McKinnell IW, Halfter W, Stoker AW: Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase {sigma}. Mol Cell Biol. 2002, 22: 1881-1892. 10.1128/MCB.22.6.1881-1892.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sajnani-Perez G, Chilton JK, Aricescu AR, Haj F, Stoker AW: Isoform-specific binding of the tyrosine phosphatase PTPsigma to a ligand in developing muscle. Mol Cell Neurosci. 2003, 22: 37-48. 10.1016/S1044-7431(02)00026-X.
Article
CAS
PubMed
Google Scholar
Wallace MJ, Batt J, Fladd CA, Henderson JT, Skarnes W, Rotin D: Neuronal defects and posterior pituitary hypoplasia in mice lacking the receptor tyrosine phosphatase PTPsigma. Nat Genet. 1999, 21: 334-338. 10.1038/6866.
Article
CAS
PubMed
Google Scholar
Elchebly M, Wagner J, Kennedy TE, Lanctot C, Michaliszyn E, Itie A, Drouin J, Tremblay ML: Neuroendocrine dysplasia in mice lacking protein tyrosine phosphatase sigma. Nat Genet. 1999, 21: 330-333. 10.1038/6859.
Article
CAS
PubMed
Google Scholar
Meathrel K, Adamek T, Batt J, Rotin D, Doering LC: Protein tyrosine phosphatase sigma-deficient mice show aberrant cytoarchitectural and structural abnormalities in the central nervous system. J Neurosci Res. 2002, 70: 24-35. 10.1002/jnr.10382.
Article
CAS
PubMed
Google Scholar
McLean J, Batt J, Doering LC, Rotin D, Bain JR: Enhanced rate of nerve regeneration and directional errors after sciatic nerve injury in receptor protein tyrosine phosphatase knock-out mice. J Neurosci. 2002, 22: 5481-5491.
CAS
PubMed
Google Scholar
Thompson KM, Uetani N, Manitt C, Elchebly M, Tremblay ML, Kennedy TE: Receptor protein tyrosine phosphatase sigma inhibits axonal regeneration and the rate of axon extension. Mol Cell Neurosci. 2003, 23: 681-692. 10.1016/S1044-7431(03)00120-9.
Article
CAS
PubMed
Google Scholar
Batt J, Asa S, Fladd C, Rotin D: Pituitary, pancreatic and gut neuroendocrine defects in protein phosphatase-sigma-deficient mice. Mol Endocrinol. 2002, 16: 155-169. 10.1210/me.16.1.155.
Article
CAS
PubMed
Google Scholar
Bernabeu R, Yang T, Xie Y, Mehta B, Ma SY, Longo FM: Downregulation of the LAR protein tyrosine phosphatase receptor is associated with increased dentate gyrus neurogenesis and an increased number of granule cell layer neurons. Mol Cell Neurosci. 2006, 31: 723-738. 10.1016/j.mcn.2006.01.003.
Article
CAS
PubMed
Google Scholar
Yang T, Bernabeu R, Zhang JS, Massa SM, Rempel HC, Longo FM: Leukocyte Antigen-Related Protein Tyrosine Phosphatase Receptor: A Small Ectodomain Isoform Functions as a Homophilic Ligand and Promotes Neurite Outgrowth. J Neurosci. 2003, 8: 3353-3363.
Google Scholar
Wang J, Bixby JL: Receptor tyrosine phosphatase-delta is a homophilic, neurite-promoting cell adhesion molecular for CNS neurons. Mol Cell Neurosci. 1999, 14: 370-384. 10.1006/mcne.1999.0789.
Article
CAS
PubMed
Google Scholar
Johnson KG, McKinnell IW, Stoker AW, Holt CE: Receptor protein tyrosine phosphatases regulate retinal ganglion cell axon outgrowth in the developing Xenopus visual system. J Neurobiol. 2001, 49: 99-117. 10.1002/neu.1068.
Article
CAS
PubMed
Google Scholar
Burden-Gulley SM, Brady-Kalnay SM: PTPμRegulates N-Cadherin-dependent Neurite Outgrowth. J Cell Biol. 1999, 144: 1323-1336. 10.1083/jcb.144.6.1323.
Article
PubMed Central
CAS
PubMed
Google Scholar
Drosopoulos NE, Walsh FS, Doherty P: A soluble version of the receptor-like protein tyrosine phosphatase kappa stimulates neurite outgrowth via a Grb2/MEK-1-dependent signalling cascade. Mol Cell Neurosci. 1999, 13: 441-449. 10.1006/mcne.1999.0758.
Article
CAS
PubMed
Google Scholar
Xie YX, Yeo TT, Zhang C, Yang T, Tisi MA, Massa SM, Longo FM: The leukocyte common antigen-related protein tyrosine phosphatase receptor regulates regenerative neurite outgrowth in vivo. J Neurosci. 2001, 21: 5130-5138.
CAS
PubMed
Google Scholar
Van der Zee CEEM, Man TY, Van Lieshout EMM, Van der Heijden I, Van Bree M, Hendriks WJAJ: Delayed peripheral nerve regeneration and central nervous system collateral sprouting in leucocyte common antigen-realted protein tyrosine phosphatase-deficient mice. Eur J Neurosci. 17: 991-1005. 10.1046/j.1460-9568.2003.02516.x.
Van der Zee CEEM, Man TY, Van der Heijden I, Van Lieshout EMM, Hendriks WJAJ: LAR protein tyrosine phosphatase deficient mice show a delay in PNS sensory nerve regeneration and CNS cholinergic collateral sprouting. Eur J Neurosci. 2000, 12: 290.
Google Scholar
Krueger NX, Van Vactor D, Wan HI, Gelbart WM, Goodman CS, Saito H: The transmembrane tyrosine phosphatase DLAR controls motor axon guidance in Drosophila. Cell. 1996, 84: 611-622. 10.1016/S0092-8674(00)81036-3.
Article
CAS
PubMed
Google Scholar
Bez A, Corsini E, Curti D, Biggiogera M, Colombo A, Nicosia RF, Pagano SF, Parati EA: Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain Res. 2003, 993: 18-29. 10.1016/j.brainres.2003.08.061.
Article
CAS
PubMed
Google Scholar
Suslov ON, Kukekov VG, Ignatova TN, Steindler DA: Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc Natl Acad Sci USA. 2002, 99: 14506-14511. 10.1073/pnas.212525299.
Article
PubMed Central
CAS
PubMed
Google Scholar
Belachew S, Chittajallu R, Aguirre AA, Yuan X, Kirby M, Anderson S, Gallo V: Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J Cell Biol. 2003, 161: 169-186. 10.1083/jcb.200210110.
Article
PubMed Central
CAS
PubMed
Google Scholar
Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC, Reynolds BA: Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroxis. J Neurosci. 1996, 16: 7599-7609.
CAS
PubMed
Google Scholar
Reynolds BA, Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992, 255: 1707-1710. 10.1126/science.1553558.
Article
CAS
PubMed
Google Scholar
Morshead CM, Garcia AD, Sofroniew MV, van der Kooy D: The ablation of glial fibrillary acidic protein-positive cells from the adult central nervous system results in loss of forebrain neural stem cells but not retinal stem cells. Eur J Neurosci. 2003, 18: 76-84. 10.1046/j.1460-9568.2003.02727.x.
Article
PubMed
Google Scholar
Espinosa-Jeffrey A, Becker-Catania SG, Zhao PM, Cole R, Edmond J, de Vellis J: Selection specification of CNS stem cells into oligodendroglial or neuronal cell lineage. J Neurosci Res. 2002, 69: 810-825. 10.1002/jnr.10344.
Article
CAS
PubMed
Google Scholar
Brannen CL, Sugaya K: In vitro differentiation of multipotent human neural progenitors in serum-free medium. Neuroreport. 2000, 11: 1123-1128. 10.1097/00001756-200004070-00042.
Article
CAS
PubMed
Google Scholar