Bantick SJ, Wise RG, Ploghaus A, Clare S, Smith SM, Tracey I: Imaging how attention modulates pain in humans using functional MRI. Brain. 2002, 125 (Pt 2): 310-319.
Article
PubMed
Google Scholar
Rainville P, Duncan G, Price D, Carrier B, Bushnell M: Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997, 277 (5328): 968-971. 10.1126/science.277.5328.968.
Article
CAS
PubMed
Google Scholar
Singer T, Seymour B, O'Doherty J, Kaube H, Dolan RJ, Frith CD: Empathy for pain involves the affective but not sensory components of pain. Science. 2004, 303 (5661): 1157-1162. 10.1126/science.1093535.
Article
CAS
PubMed
Google Scholar
Sikes RW, Vogt BA: Nociceptive neurons in area 24 of rabbit cingulate cortex. J Neurophysiol. 1992, 68 (5): 1720-1732.
CAS
PubMed
Google Scholar
Zhang R, Tomida M, Katayama Y, Kawakami Y: Response durations encode nociceptive stimulus intensity in the rat medial prefrontal cortex. Neuroscience. 2004, 125 (3): 777-785. 10.1016/j.neuroscience.2004.01.055.
Article
CAS
PubMed
Google Scholar
Johansen JP, Fields HL, Manning BH: The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc Natl Acad Sci U S A. 2001, 98 (14): 8077-8082. 10.1073/pnas.141218998.
Article
PubMed Central
CAS
PubMed
Google Scholar
Etkin A, Egner T, Kalisch R: Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci. 2011, 15 (2): 85-93. 10.1016/j.tics.2010.11.004.
Article
PubMed Central
PubMed
Google Scholar
Onozawa K, Yagasaki Y, Izawa Y, Abe H, Kawakami Y: Amygdala-prefrontal pathways and the dopamine system affect nociceptive responses in the prefrontal cortex. BMC Neurosci. 2011, 12: 115-10.1186/1471-2202-12-115.
Article
PubMed Central
CAS
PubMed
Google Scholar
Carr DB, Sesack SR: GABA-containing neurons in the rat ventral tegmental area project to the prefrontal cortex. Synapse. 2000, 38 (2): 114-123. 10.1002/1098-2396(200011)38:2<114::AID-SYN2>3.0.CO;2-R.
Article
CAS
PubMed
Google Scholar
Potvin S, Grignon S, Marchand S: Human evidence of a supra-spinal modulating role of dopamine on pain perception. Synapse. 2009, 63 (5): 390-402. 10.1002/syn.20616.
Article
CAS
PubMed
Google Scholar
Nogueira L, Lavin A: Strong somatic stimulation differentially regulates the firing properties of prefrontal cortex neurons. Brain Res. 2010, 1351: 57-63.
Article
PubMed Central
CAS
PubMed
Google Scholar
Beiske A, Loge J, Ronningen A, Svensson E: Pain in Parkinson's disease: Prevalence and characteristics. Pain. 2009, 141 (1–2): 173-177.
Article
CAS
PubMed
Google Scholar
Chaudhuri K, Healy D, Schapira A: Non-motor symptoms of Parkinson's disease: diagnosis and management. Lancet Neurol. 2006, 5 (3): 235-245. 10.1016/S1474-4422(06)70373-8.
Article
PubMed
Google Scholar
Defazio G, Berardelli A, Fabbrini G, Martino D, Fincati E, Fiaschi A, Moretto G, Abbruzzese G, Marchese R, Bonuccelli U, et al: Pain as a nonmotor symptom of Parkinson disease: evidence from a case-control study. Arch Neurol. 2008, 65 (9): 1191-1194. 10.1001/archneurol.2008.2.
Article
PubMed
Google Scholar
Lopez-Avila A, Coffeen U, Ortega-Legaspi J, del Angel R, Pellicer F: Dopamine and NMDA systems modulate long-term nociception in the rat anterior cingulate cortex. Pain. 2004, 111 (1–2): 136-143.
Article
CAS
PubMed
Google Scholar
Tassorelli C, Armentero MT, Greco R, Fancellu R, Sandrini G, Nappi G, Blandini F: Behavioral responses and Fos activation following painful stimuli in a rodent model of Parkinson's disease. Brain Res. 2007, 1176: 53-61.
Article
CAS
PubMed
Google Scholar
Chudler EH, Lu Y: Nociceptive behavioral responses to chemical, thermal and mechanical stimulation after unilateral, intrastriatal administration of 6-hydroxydopamine. Brain Res. 2008, 1213: 41-47.
Article
PubMed Central
CAS
PubMed
Google Scholar
Saade NE, Atweh SF, Bahuth NB, Jabbur SJ: Augmentation of nociceptive reflexes and chronic deafferentation pain by chemical lesions of either dopaminergic terminals or midbrain dopaminergic neurons. Brain Res. 1997, 751: 1-12. 10.1016/S0006-8993(96)01164-X.
Article
CAS
PubMed
Google Scholar
Margolis EB, Lock H, Chefer VI, Shippenberg TS, Hjelmstad GO, Fields HL: Kappa opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. Proc Natl Acad Sci U S A. 2006, 103 (8): 2938-2942. 10.1073/pnas.0511159103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Seguela P, Watkins KC, Descarries L: Ultrastructural features of dopamine axon terminals in the anteromedial and the suprarhinal cortex of adult rat. Brain Res. 1988, 442: 11-22. 10.1016/0006-8993(88)91427-8.
Article
CAS
PubMed
Google Scholar
Yokofujita J, Oda S, Igarashi H, Sato F, Kuroda M: Synaptic characteristics between cortical cells in the rat prefrontal cortex and axon terminals from the ventral tegmental area that utilize different neurotransmitters. Int J Neurosci. 2008, 118 (10): 1443-1459. 10.1080/00207450701870253.
Article
CAS
PubMed
Google Scholar
Vogt BA, Sikes RW, Vogt LJ: From Anterior cingulate cortex and the medial pain system. Neurobiology of cingulate cortex and limbic thalamus. Edited by: Vogt BA, Gabriel M. 1993, Boston: Birkhauser, 313-344.
Chapter
Google Scholar
Seamans J, Yang C: The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol. 2004, 74 (1): 1-58. 10.1016/j.pneurobio.2004.05.006.
Article
CAS
PubMed
Google Scholar
Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM: Dopaminergic modulation of high-level cognition in Parkinson's disease: the role of the prefrontal cortex revealed by PET. Brain. 2002, 125 (Pt 3): 584-594.
Article
PubMed
Google Scholar
Vorobyov VV, Schibaev NV, Morelli M, Carta AR: EEG modifications in the cortex and striatum after dopaminergic priming in the 6-hydroxydopamine rat model of Parkinson's disease. Brain Res. 2003, 972: 177-185. 10.1016/S0006-8993(03)02528-9.
Article
CAS
PubMed
Google Scholar
Garris PA, Wightman RM: Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study. J Neurosci. 1994, 14 (1): 442-450.
CAS
PubMed
Google Scholar
Westerink BH, Enrico P, Feimann J, De Vries JB: The pharmacology of mesocortical dopamine neurons: a dual-probe microdialysis study in the ventral tegmental area and prefrontal cortex of the rat brain. J Pharmacol Exp Ther. 1998, 285 (1): 143-154.
CAS
PubMed
Google Scholar
Godbout R, Mantz J, Pirot S, Glowinski J, Thierry AM: Inhibitory influence of the mesocortical dopaminergic neurons on their target cells: electrophysiological and pharmacological characterization. J Pharmacol Exp Ther. 1991, 258 (2): 728-738.
CAS
PubMed
Google Scholar
Otani S, Auclair N, Desce J, Roisin M, Crepel F: Dopamine receptors and groups I and II mGluRs cooperate for long-term depression induction in rat prefrontal cortex through converging postsynaptic activation of MAP kinases. J Neurosci. 1999, 19 (22): 9788-9802.
CAS
PubMed
Google Scholar
Lavin A, Nogueira L, Lapish CC, Wightman RM, Phillips PE, Seamans JK: Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J Neurosci. 2005, 25 (20): 5013-5023. 10.1523/JNEUROSCI.0557-05.2005.
Article
CAS
PubMed
Google Scholar
Devoto P, Flore G, Saba P, Castelli MP, Piras AP, Luesu W, Viaggi MC, Ennas MG, Gessa GL: 6-Hydroxydopamine lesion in the ventral tegmental area fails to reduce extracellular dopamine in the cerebral cortex. J Neurosci Res. 2008, 86 (7): 1647-1658. 10.1002/jnr.21611.
Article
CAS
PubMed
Google Scholar
Goto Y, Otani S, Grace AA: The Yin and Yang of dopamine release: a new perspective. Neuropharmacology. 2007, 53 (5): 583-587. 10.1016/j.neuropharm.2007.07.007.
Article
PubMed Central
CAS
PubMed
Google Scholar
Parfitt KD, Gratton A, Bickford-Wimer PC: Electrophysiological effects of selective D1 and D2 dopamine receptor agonists in the medial prefrontal cortex of young and aged Fischer 344 rats. J Pharmacol Exp Ther. 1990, 254 (2): 539-545.
CAS
PubMed
Google Scholar
Pirot S, Godbout R, Mantz J, Tassin J, Glowinski J, Thierry A: Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for the involvement of both dopaminergic and GABAergic components. Neuroscience. 1992, 49 (4): 857-865. 10.1016/0306-4522(92)90362-6.
Article
CAS
PubMed
Google Scholar
Civelli O, Bunzow JR, Grandy DK: Molecular diversity of the dopamine receptors. Annu Rev Pharmacol Toxicol. 1993, 33: 281-307. 10.1146/annurev.pa.33.040193.001433.
Article
CAS
PubMed
Google Scholar
Vincent SL, Khan Y, Benes FM: Cellular distribution of dopamine D1 and D2 receptors in rat medial prefrontal cortex. J Neurosci. 1993, 13 (6): 2551-2564.
CAS
PubMed
Google Scholar
Vincent SL, Khan Y, Benes FM: Cellular colocalization of dopamine D1 and D2 receptors in rat medial prefrontal cortex. Synapse. 1995, 19 (2): 112-120. 10.1002/syn.890190207.
Article
CAS
PubMed
Google Scholar
Neal A: From Neurotransmitter receptors. Fundamental Neuroscience. Edited by: Squire LR, Berg D, Bloom FE. 2008, London: Academic Press, 181-204. 3
Google Scholar
Li YC, Liu G, Hu JL, Gao WJ, Huang YQ: Dopamine D1 receptor-mediated enhancement of NMDA receptor trafficking requires rapid PKC-dependent synaptic insertion in the prefrontal neurons. J Neurochem. 2010, 114 (1): 62-73.
CAS
PubMed
Google Scholar
Gurden H, Takita M, Jay TM: Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term potentiation at hippocampal-prefrontal cortex synapses in vivo. J Neurosci. 2000, 20 (22): RC106.
CAS
PubMed
Google Scholar
Santana N, Mengod G, Artigas F: Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex. 2009, 19 (4): 849-860.
Article
PubMed
Google Scholar
Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF: Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci. 2007, 10 (3): 376-384. 10.1038/nn1846.
Article
CAS
PubMed
Google Scholar
Zahrt J, Taylor JR, Mathew RG, Arnsten AF: Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci. 1997, 17 (21): 8528-8535.
CAS
PubMed
Google Scholar
Nakamura H, Katayama Y, Kawakami Y: Hippocampal CA1/subiculum-prefrontal cortical pathways induce plastic changes of nociceptive responses in cingulate and prelimbic areas. BMC Neurosci. 2010, 11: 100-10.1186/1471-2202-11-100.
Article
PubMed Central
PubMed
Google Scholar
Singer T, Seymour B, O'Doherty JP, Stephan KE, Dolan RJ, Frith CD: Empathic neural responses are modulated by the perceived fairness of others. Nature. 2006, 439 (7075): 466-469. 10.1038/nature04271.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wolf ME, Mangiavacchi S, Sun X: Mechanisms by which dopamine receptors may influence synaptic plasticity. Ann N Y Acad Sci. 2003, 1003: 241-249. 10.1196/annals.1300.015.
Article
CAS
PubMed
Google Scholar
Cervero F, Handwerker HO, Laird JM: Prolonged noxious mechanical stimulation of the rat's tail: responses and encoding properties of dorsal horn neurons. J Physiol. 1988, 404: 419-436.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nagata T, Suzuki H, Zhang R, Ozaki M, Kawakami Y: Mechanical stimulation activates small fiber mediated nociceptive responses in the nucleus gigantocellularis. Exp Brain Res. 2003, 149 (4): 505-511.
CAS
PubMed
Google Scholar
Paxinos G, Watson C: The Rat Brain in Stereotaxic Coordinates. 1998, San Diego: Academic Press, 4
Google Scholar
Gurden H, Tassin JP, Jay TM: Integrity of the mesocortical dopaminergic system is necessary for complete expression of in vivo hippocampal-prefrontal cortex long-term potentiation. Neuroscience. 1999, 94 (4): 1019-1027. 10.1016/S0306-4522(99)00395-4.
Article
CAS
PubMed
Google Scholar