Kegeles LS, Abi-Dargham A, Frankle WG, Gil R, Cooper TB, Slifstein M, Hwang DR, Huang Y, Haber SN, Laruelle M: Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch Gen Psychiatry. 2010, 67 (3): 231-239. 10.1001/archgenpsychiatry.2010.10.
Article
CAS
PubMed
Google Scholar
Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, Kapur S: The nature of dopamine dysfunction in schizophrenia and what this means for treatment: meta-analysis of imaging studies. Arch Gen Psychiatry. 2012, 10.1001/archgenpsychiatry.2012.169. Published online April 02, 2012
Google Scholar
McGrath J, Saha S, Welham J, El Saadi O, MacCauley C, Chant D: A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity,migrant status and methodology. BMC Med. 2004, 2: 13-10.1186/1741-7015-2-13.
Article
PubMed Central
PubMed
Google Scholar
Christie KA, Burke JD, Regier DA, Rae DS, Boyd JH, Locke BZ: Epidemiologic evidence for early onset of mental disorders and higher risk of drug abuse in young adults. Am J Psychiatry. 1988, 145 (8): 971-975.
Article
CAS
PubMed
Google Scholar
Gaidano G, Berta L, Rovero E, Valenzano C, Rosatti P: Dynamics of the binding capacity of plasma sex hormone binding globulin (SHBG) for testosterone and dihydrotestosterone during puberty. Clin Chim Acta. 1980, 100 (2): 91-97. 10.1016/0009-8981(80)90069-8.
Article
CAS
PubMed
Google Scholar
Celotti F, Melcangi RC, Martini L: The 5 alpha-reductase in the brain:molecular aspects and relation to brain function. Front Neuroendocrinol. 1992, 13 (2): 163-215.
CAS
PubMed
Google Scholar
Kritzer MF: Long-term gonadectomy affects the density of tyrosine hydroxylase- but not dopamine-beta-hydroxylase-, choline acetyltransferase- or serotonin-immunoreactive axons in the medial prefrontal cortices of adultmale rats. Cereb Cortex. 2003, 13 (3): 282-296. 10.1093/cercor/13.3.282.
Article
CAS
PubMed
Google Scholar
Kritzer MF, Creutz LM: Region and sex differences in constituent dopamine neurons and immunoreactivity for intracellular estrogen and androgen receptors in mesocortical projections in rats. J Neurosci. 2008, 28 (38): 9525-9535. 10.1523/JNEUROSCI.2637-08.2008.
Article
CAS
PubMed Central
PubMed
Google Scholar
Perez SE, Chen EY, Mufson EJ: Distribution of estrogen receptor alpha and beta immunoreactive profiles in the postnatal rat brain. Brain Res Dev Brain Res. 2003, 145 (1): 117-139.
Article
CAS
PubMed
Google Scholar
Shughrue PJ, Lane MV, Merchenthaler I: Comparative distribution of estrogen receptor-alpha and betam RNA in the rat central nervous system. J Comp Neurol. 1997, 388 (4): 507-525. 10.1002/(SICI)1096-9861(19971201)388:4<507::AID-CNE1>3.0.CO;2-6.
Article
CAS
PubMed
Google Scholar
Ravizza T, Veliskova J, Moshe SL: Testosterone regulates androgen and estrogen receptor immunoreactivity in rat substantia nigra pars reticulata. Neurosci Lett. 2003, 338 (1): 57-61. 10.1016/S0304-3940(02)01317-4.
Article
CAS
PubMed
Google Scholar
Poletti A, Martini L: Androgen-activating enzymes in the central nervous system. J Steroid Biochem Mol Biol. 1999, 69 (1–6): 117-122.
Article
CAS
PubMed
Google Scholar
MacLusky NJ, Walters MJ, Clark AS, Toran-Allerand CD: Aromatase in the cerebral cortex, hippocampus, and mid-brain: ontogeny and developmental implications. Mol Cell Neurosci. 1994, 5 (6): 691-698. 10.1006/mcne.1994.1083.
Article
CAS
PubMed
Google Scholar
Torres JM, Ortega E: Differential regulation of steroid 5alpha-reductase isozymes expression by androgens in the adult rat brain. FASEB J. 2003, 17 (11): 1428-1433. 10.1096/fj.02-1119com.
Article
CAS
PubMed
Google Scholar
Krieger NR, Scott RG, Jurman ME: Testosterone 5 alpha-reductase in rat brain. J Neurochem. 1983, 40 (5): 1460-1464. 10.1111/j.1471-4159.1983.tb13591.x.
Article
CAS
PubMed
Google Scholar
Beatty WW, Dodge AM, Traylor KL: Stereotyped behavior elicited by amphetamine in the rat: influences of the testes. Pharmacol Biochem Behav. 1982, 16 (4): 565-568. 10.1016/0091-3057(82)90416-6.
Article
CAS
PubMed
Google Scholar
Walker QD, Cabassa J, Kaplan KA, Li ST, Haroon J, Spohr HA, Kuhn CM: Sex differences in cocaine-stimulated motor behavior: disparate effects of gonadectomy. Neuropsychopharmacology. 2001, 25 (1): 118-130. 10.1016/S0893-133X(00)00248-7.
Article
CAS
PubMed
Google Scholar
Dluzen DE, Ramirez VD: Effects of orchidectomy on nigro-striatal dopaminergic function: behavioral and physiological evidence. J Neuroendocrinol. 1989, 1 (4): 285-290. 10.1111/j.1365-2826.1989.tb00117.x.
Article
CAS
PubMed
Google Scholar
de Souza Silva MA, Mattern C, Topic B, Buddenberg TE, Huston JP: Dopaminergic and serotonergic activity in neostriatum and nucleus accumbens enhanced by intranasal administration of testosterone. Eur Neuropsychopharmacol. 2009, 19 (1): 53-63. 10.1016/j.euroneuro.2008.08.003.
Article
CAS
PubMed
Google Scholar
Thiblin I, Finn A, Ross SB, Stenfors C: Increased dopaminergic and 5-hydroxytryptaminergic activities in male rat brain following long-term treatment with anabolic androgenic steroids. Br J Pharmacol. 1999, 126 (6): 1301-1306. 10.1038/sj.bjp.0702412.
Article
CAS
PubMed Central
PubMed
Google Scholar
Johnson ML, Day A, Ho CC, David Walker Q, Francis R, Kuhn CM: Androgen decreases dopamine neurone survival in rat midbrain. J Neuroendocrinol. 2010, 22 (4): 238-247. 10.1111/j.1365-2826.2010.01965.x.
Article
CAS
PubMed Central
PubMed
Google Scholar
Allan CM, Couse JF, Simanainen U, Spaliviero J, Jimenez M, Rodriguez K, Korach KS, Handelsman DJ: Estradiol induction of spermatogenesis is mediated via an estrogen receptor-{alpha}mechanism involving neuroendocrine activation of follicle-stimulating hormone secretion. Endocrinology. 2010, 151 (6): 2800-2810. 10.1210/en.2009-1477.
Article
CAS
PubMed Central
PubMed
Google Scholar
Singh J, O'Neill C, Handelsman DJ: Induction of spermatogenesis by androgens in gonadotropin-deficient (hpg)mice. Endocrinology. 1995, 136 (12): 5311-5321. 10.1210/en.136.12.5311.
CAS
PubMed
Google Scholar
Zirkin BR, Santulli R, Awoniyi CA, Ewing LL: Maintenance of advanced spermatogenic cells in the adult rat testis: quantitative relationship to testosterone concentration within the testis. Endocrinology. 1989, 124 (6): 3043-3049. 10.1210/endo-124-6-3043.
Article
CAS
PubMed
Google Scholar
Purves-Tyson TD, Arshi MS, Handelsman DJ, Cheng Y, Keast JR: Androgen and estrogen receptor-mediated mechanisms of testosterone action in male rat pelvic autonomic ganglia. Neuroscience. 2007, 148 (1): 92-104. 10.1016/j.neuroscience.2007.05.043.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mooradian AD, Morley JE, Korenman SG: Biological actions of androgens. Endocr Rev. 1987, 8 (1): 1-28. 10.1210/edrv-8-1-1.
Article
CAS
PubMed
Google Scholar
Paxinos G, Watson C: The rat brain in stereotaxic coordinates. 2007, Elsevier, , 6
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3 (7): 1-12.
Article
Google Scholar
Harwood DT, Handelsman DJ: Development and validation of a sensitive liquid chromatography-tandem mass spectrometry assay to simultaneously measure androgens and estrogens in serum without derivatization. Clin Chim Acta. 2009, 409 (1–2): 78-84.
Article
CAS
PubMed
Google Scholar
McNamara KM, Harwood DT, Simanainen U, Walters KA, Jimenez M, Handelsman DJ: Measurement of sex steroids in murine blood and reproductive tissues by liquid chromatography-tandemmass spectrometry. J Steroid Biochem Mol Biol. 2010, 121 (3–5): 611-618.
Article
CAS
PubMed
Google Scholar
Horning S, Schanzer W, Donike M: Steroid profiling in human blood in: recent advances in doping analysis. volume 3. Koln: Sport und Buch StrauB. Edited by: Donike M, Geyer H, Gotzmann A, Mareck-Engelke U. 1996, 325-336.
Google Scholar
Weickert CS, Sheedy D, Rothmond DA, Dedova I, Fung S, Garrick T, Wong J, Harding AJ, Sivagnanansundaram S, Hunt C, et al: Selection of reference gene expression in a schizophrenia brain cohort. Aust N Z J Psychiatry. 2010, 44 (1): 59-70. 10.3109/00048670903393662.
Article
PubMed Central
PubMed
Google Scholar
Hafner H: Gender differences in schizophrenia. Psychoneuroendocrinology. 2003, 28 (Suppl 2): 17-54.
Article
PubMed
Google Scholar
Szymanski S, Lieberman JA, Alvir JM, Mayerhoff D, Loebel A, Geisler S, Chakos M, Koreen A, Jody D, Kane J, et al: Gender differences in onset of illness, treatment response, course, and biologic indexes in first-episode schizophrenic patients. Am J Psychiatry. 1995, 152 (5): 698-703.
Article
CAS
PubMed
Google Scholar
Salokangas RK: Gender and the use of neuroleptics in schizophrenia. Schizophr Res. 2004, 66 (1): 41-49. 10.1016/S0920-9964(02)00530-3.
Article
PubMed
Google Scholar
Beratis S, Gabriel J, Hoidas S: Age at onset in subtypes of schizophrenic disorders. Schizophr Bull. 1994, 20 (2): 287-296.
Article
CAS
PubMed
Google Scholar
Ravizza T, Galanopoulou AS, Veliskova J, Moshe SL: Sex differences in androgen and estrogen receptor expression in rat substantia nigra during development: an immunohistochemical study. Neuroscience. 2002, 115 (3): 685-696. 10.1016/S0306-4522(02)00491-8.
Article
CAS
PubMed
Google Scholar
Kritzer MF: Selective colocalization of immunoreactivity for intracellular gonadal hormone receptors and tyrosine hydroxylase in the ventral tegmental area, substantia nigra, and retrorubral fields in the rat. J Comp Neurol. 1997, 379 (2): 247-260. 10.1002/(SICI)1096-9861(19970310)379:2<247::AID-CNE6>3.0.CO;2-3.
Article
CAS
PubMed
Google Scholar
Yamaguchi N, Yuri K: Changes in oestrogen receptor-beta mRNA expression in male rat brain with age. J Neuroendocrinol. 2012, 24 (2): 310-318. 10.1111/j.1365-2826.2011.02231.x.
Article
CAS
PubMed
Google Scholar
Creutz LM, Kritzer MF: Estrogen receptor-beta immunoreactivity in the midbrain of adult rats: regional, subregional, and cellular localization in the A10, A9, and A8 dopamine cell groups. J Comp Neurol. 2002, 446 (3): 288-300. 10.1002/cne.10207.
Article
CAS
PubMed
Google Scholar
Zhao C, Dahlman-Wright K, Gustafsson JA: Estrogen signaling via estrogen receptor {beta}. J Biol Chem. 2010, 285 (51): 39575-39579. 10.1074/jbc.R110.180109.
Article
CAS
PubMed Central
PubMed
Google Scholar
Matthews J, Gustafsson JA: Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol Interv. 2003, 3 (5): 281-292. 10.1124/mi.3.5.281.
Article
CAS
PubMed
Google Scholar
Kuppers E, Krust A, Chambon P, Beyer C: Functional alterations of the nigrostriatal dopamine system in estrogen receptor-alpha knockout (ERKO)mice. Psychoneuroendocrinology. 2008, 33 (6): 832-838. 10.1016/j.psyneuen.2008.03.007.
Article
PubMed
Google Scholar
Wang L, Andersson S, Warner M, Gustafsson JA: Morphological abnormalities in the brains of estrogen receptor beta knockout mice. Proc Natl Acad Sci U S A. 2001, 98 (5): 2792-2796. 10.1073/pnas.041617498.
Article
CAS
PubMed Central
PubMed
Google Scholar
Beckstead MJ, Grandy DK, Wickman K, Williams JT: Vesicular dopamine release elicits an inhibitory postsynaptic current in midbrain dopamine neurons. Neuron. 2004, 42 (6): 939-946. 10.1016/j.neuron.2004.05.019.
Article
CAS
PubMed
Google Scholar
Meyers B, D'Agostino A, Walker J, Kritzer MF: Gonadectomy and hormone replacement exert region- and enzyme isoform-specific effects onmonoamine oxidase and catechol-O-methyltransferase activity in prefrontal cortex and neostriatum of adultmale rats. Neuroscience. 2010, 165 (3): 850-862. 10.1016/j.neuroscience.2009.11.013.
Article
CAS
PubMed Central
PubMed
Google Scholar
Birgner C, Kindlundh-Hogberg AM, Oreland L, Alsio J, Lindblom J, Schioth HB, Bergstrom L: Reduced activity of monoamine oxidase in the rat brain following repeated nandrolone decanoate administration. Brain Res. 2008, 1219: 103-110.
Article
CAS
PubMed
Google Scholar
Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR: Effect of COMT Val108/158met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A. 2001, 98 (12): 6917-6922. 10.1073/pnas.111134598.
Article
CAS
PubMed Central
PubMed
Google Scholar
Akil M, Kolachana BS, Rothmond DA, Hyde TM, Weinberger DR, Kleinman JE: Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. J Neurosci. 2003, 23 (6): 2008-2013.
CAS
PubMed
Google Scholar
Roselli CE, Ellinwood WE, Resko JA: Regulation of brain aromatase activity in rats. Endocrinology. 1984, 114 (1): 192-200. 10.1210/endo-114-1-192.
Article
CAS
PubMed
Google Scholar
Bortolato M, Frau R, Orru M, Bourov Y, Marrosu F, Mereu G, Devoto P, Gessa GL: Antipsychotic-like properties of 5-alpha-reductase inhibitors. Neuropsychopharmacology. 2008, 33 (13): 3146-3156. 10.1038/npp.2008.39.
Article
CAS
PubMed
Google Scholar
Paba S, Frau R, Godar SC, Devoto P, Marrosu F, Bortolato M: Steroid 5-Reductase as a Novel Therapeutic Target for Schizophrenia and Other Neuropsychiatric Disorders. Curr Pharm Des. 2011, 17 (2): 151-167. 10.2174/138161211795049589.
Article
CAS
PubMed
Google Scholar
Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL: Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl). 2008, 199 (3): 331-388. 10.1007/s00213-008-1072-4.
Article
CAS
PubMed Central
Google Scholar
Morris RW, Fung SJ, Rothmond DA, Richards B, Ward S, Noble PL, Woodward RA, Weickert CS, Winslow JT: The effect of gonadectomy on prepulse inhibition and fear-potentiated startle in adolescent rhesus macaques. Psychoneuroendocrinology. 2010, 35 (6): 896-905. 10.1016/j.psyneuen.2009.12.002.
Article
CAS
PubMed
Google Scholar
Gogos A, van den Buuse M: Castration reduces the effect of serotonin-1A receptor stimulation on prepulse inhibition in rats. Behav Neurosci. 2003, 117 (6): 1407-1415.
Article
CAS
PubMed
Google Scholar
van den Buuse M, Simpson ER, Jones ME: Prepulse inhibition of acoustic startle in aromatase knock-out mice: effects of age and gender. Genes Brain Behav. 2003, 2 (2): 93-102. 10.1034/j.1601-183X.2003.00014.x.
Article
CAS
PubMed
Google Scholar
Weickert CS, Miranda-Angulo AL, Wong J, Perlman WR, Ward SE, Radhakrishna V, Straub RE, Weinberger DR, Kleinman JE: Variants in the estrogen receptor alpha gene and its mRNA contribute to risk for schizophrenia. Hum Mol Genet. 2008, 17 (15): 2293-2309. 10.1093/hmg/ddn130.
Article
CAS
PubMed Central
PubMed
Google Scholar