Pando MP, Sassone-Corsi P: Unraveling the mechanisms of the vertebrate circadian clock: zebrafish may light the way. Bioessays. 2002, 24 (5): 419-426. 10.1002/bies.10091.
CAS
PubMed
Google Scholar
Stephan FK, Zucker I: Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA. 1972, 69 (6): 1583-1586. 10.1073/pnas.69.6.1583.
PubMed Central
CAS
PubMed
Google Scholar
Ralph MR, Foster RG, Davis FC, Menaker M: Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990, 247 (4945): 975-978. 10.1126/science.2305266.
CAS
PubMed
Google Scholar
Piggins HD, Loudon A: Circadian biology: clocks within clocks. Curr Biol. 2005, 15 (12): R455-457. 10.1016/j.cub.2005.06.019.
CAS
PubMed
Google Scholar
Korf HW, Schomerus C, Stehle JH: The pineal organ, its hormone melatonin, and the photoneuroendocrine system. Adv Anat Embryol Cell Biol. 1998, 146: 1-100.
CAS
PubMed
Google Scholar
Honma K, Honma S: The SCN-independent clocks, methamphetamine and food restriction. Eur J Neurosci. 2009, 30 (9): 1707-1717. 10.1111/j.1460-9568.2009.06976.x.
PubMed
Google Scholar
Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ: Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet. 2005, 6 (7): 544-556. 10.1038/nrg1633.
PubMed Central
CAS
PubMed
Google Scholar
Ruan GX, Zhang DQ, Zhou T, Yamazaki S, McMahon DG: Circadian organization of the mammalian retina. Proc Natl Acad Sci USA. 2006, 103 (25): 9703-9708. 10.1073/pnas.0601940103.
PubMed Central
CAS
PubMed
Google Scholar
Tosini G, Bertolucci C, Foa A: The circadian system of reptiles: a multioscillatory and multiphotoreceptive system. Physiol Behav. 2001, 72 (4): 461-471. 10.1016/S0031-9384(00)00423-6.
CAS
PubMed
Google Scholar
Cahill GM: Clock mechanisms in zebrafish. Cell Tissue Res. 2002, 309 (1): 27-34. 10.1007/s00441-002-0570-7.
CAS
PubMed
Google Scholar
Underwood H, Steele CT, Zivkovic B: Circadian organization and the role of the pineal in birds. Microsc Res Tech. 2001, 53 (1): 48-62. 10.1002/jemt.1068.
CAS
PubMed
Google Scholar
Rink E, Wullimann MF: Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain Res. 2004, 1011 (2): 206-220. 10.1016/j.brainres.2004.03.027.
CAS
PubMed
Google Scholar
Yanez J, Busch J, Anadon R, Meissl H: Pineal projections in the zebrafish (Danio rerio): overlap with retinal and cerebellar projections. Neuroscience. 2009, 164 (4): 1712-1720. 10.1016/j.neuroscience.2009.09.043.
CAS
PubMed
Google Scholar
Wulliman MF, Rupp B, Reichert H: Neuroanatomy of the Zebrafish Brain: A Topological Atlas. 1996, Birkhauser
Google Scholar
Burrill JD, Easter SS: Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio). J Comp Neurol. 1994, 346 (4): 583-600. 10.1002/cne.903460410.
CAS
PubMed
Google Scholar
Rink E, Guo S: The too few mutant selectively affects subgroups of monoaminergic neurons in the zebrafish forebrain. Neuroscience. 2004, 127 (1): 147-154. 10.1016/j.neuroscience.2004.05.004.
CAS
PubMed
Google Scholar
Mathieu J, Barth A, Rosa FM, Wilson SW, Peyrieras N: Distinct and cooperative roles for Nodal and Hedgehog signals during hypothalamic development. Development. 2002, 129 (13): 3055-3065.
CAS
PubMed
Google Scholar
Kaneko M, Hernandez-Borsetti N, Cahill GM: Diversity of zebrafish peripheral oscillators revealed by luciferase reporting. Proc Natl Acad Sci USA. 2006, 103 (39): 14614-14619. 10.1073/pnas.0606563103.
PubMed Central
CAS
PubMed
Google Scholar
Whitmore D, Foulkes NS, Sassone-Corsi P: Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature. 2000, 404 (6773): 87-91. 10.1038/35003589.
CAS
PubMed
Google Scholar
Whitmore D, Foulkes NS, Strahle U, Sassone-Corsi P: Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat Neurosci. 1998, 1 (8): 701-707. 10.1038/3703.
CAS
PubMed
Google Scholar
Cahill GM: Circadian regulation of melatonin production in cultured zebrafish pineal and retina. Brain Res. 1996, 708 (1-2): 177-181. 10.1016/0006-8993(95)01365-2.
CAS
PubMed
Google Scholar
Brandstatter R, Abraham U: Hypothalamic circadian organization in birds. I. Anatomy, functional morphology, and terminology of the suprachiasmatic region. Chronobiol Int. 2003, 20 (4): 637-655. 10.1081/CBI-120023343.
PubMed
Google Scholar
Abraham U, Albrecht U, Brandstatter R: Hypothalamic circadian organization in birds. II. Clock gene expression. Chronobiol Int. 2003, 20 (4): 657-669. 10.1081/CBI-120022414.
CAS
PubMed
Google Scholar
Rebagliati MR, Toyama R, Haffter P, Dawid IB: cyclops encodes a nodal-related factor involved in midline signaling. Proc Natl Acad Sci USA. 1998, 95 (17): 9932-9937. 10.1073/pnas.95.17.9932.
PubMed Central
CAS
PubMed
Google Scholar
Sampath K, Rubinstein AL, Cheng AM, Liang JO, Fekany K, Solnica-Krezel L, Korzh V, Halpern ME, Wright CV: Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature. 1998, 395 (6698): 185-189. 10.1038/26020.
CAS
PubMed
Google Scholar
Hatta K, Kimmel CB, Ho RK, Walker C: The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature. 1991, 350 (6316): 339-341. 10.1038/350339a0.
CAS
PubMed
Google Scholar
Balment RJ, Lu W, Weybourne E, Warne JM: Arginine vasotocin a key hormone in fish physiology and behaviour: a review with insights from mammalian models. Gen Comp Endocrinol. 2006, 147 (1): 9-16. 10.1016/j.ygcen.2005.12.022.
CAS
PubMed
Google Scholar
Caldwell HK, Lee HJ, Macbeth AH, Young WS: Vasopressin: behavioral roles of an "original" neuropeptide. Prog Neurobiol. 2008, 84 (1): 1-24. 10.1016/j.pneurobio.2007.10.007.
PubMed Central
CAS
PubMed
Google Scholar
Rohr KB, Barth KA, Varga ZM, Wilson SW: The nodal pathway acts upstream of hedgehog signaling to specify ventral telencephalic identity. Neuron. 2001, 29 (2): 341-351. 10.1016/S0896-6273(01)00210-0.
CAS
PubMed
Google Scholar
Puelles L: A segmental morphological paradigm for understanding vertebrate forebrains. Brain Behav Evol. 1995, 46 (4-5): 319-337. 10.1159/000113282.
CAS
PubMed
Google Scholar
Eaton JL, Holmqvist B, Glasgow E: Ontogeny of vasotocin-expressing cells in zebrafish: selective requirement for the transcriptional regulators orthopedia and single-minded 1 in the preoptic area. Dev Dyn. 2008, 237 (4): 995-1005. 10.1002/dvdy.21503.
CAS
PubMed
Google Scholar
Gothilf Y, Toyama R, Coon SL, Du SJ, Dawid IB, Klein DC: Pineal-specific expression of green fluorescent protein under the control of the serotonin-N-acetyltransferase gene regulatory regions in transgenic zebrafish. Dev Dyn. 2002, 225 (3): 241-249. 10.1002/dvdy.10152.
CAS
PubMed
Google Scholar
Triqueneaux G, Thenot S, Kakizawa T, Antoch MP, Safi R, Takahashi JS, Delaunay F, Laudet V: The orphan receptor Rev-erbalpha gene is a target of the circadian clock pacemaker. J Mol Endocrinol. 2004, 33 (3): 585-608. 10.1677/jme.1.01554.
PubMed Central
CAS
PubMed
Google Scholar
Appelbaum L, Toyama R, Dawid IB, Klein DC, Baler R, Gothilf Y: Zebrafish serotonin-N-acetyltransferase-2 gene regulation: pineal-restrictive downstream module contains a functional E-box and three photoreceptor conserved elements. Mol Endocrinol. 2004, 18 (5): 1210-1221. 10.1210/me.2003-0439.
CAS
PubMed
Google Scholar
Gamse JT, Shen YC, Thisse C, Thisse B, Raymond PA, Halpern ME, Liang JO: Otx5 regulates genes that show circadian expression in the zebrafish pineal complex. Nat Genet. 2002, 30 (1): 117-121. 10.1038/ng793.
CAS
PubMed
Google Scholar
Appelbaum L, Anzulovich A, Baler R, Gothilf Y: Homeobox-clock protein interaction in zebrafish. A shared mechanism for pineal-specific and circadian gene expression. J Biol Chem. 2005, 280 (12): 11544-11551. 10.1074/jbc.M412935200.
CAS
PubMed
Google Scholar
Stenkamp DL, Cunningham LL, Raymond PA, Gonzalez-Fernandez F: Novel expression pattern of interphotoreceptor retinoid-binding protein (IRBP) in the adult and developing zebrafish retina and RPE. Mol Vis. 1998, 4: 26.
CAS
PubMed
Google Scholar
Ziv L, Levkovitz S, Toyama R, Falcon J, Gothilf Y: Functional development of the zebrafish pineal gland: light-induced expression of period2 is required for onset of the circadian clock. J Neuroendocrinol. 2005, 17 (5): 314-320. 10.1111/j.1365-2826.2005.01315.x.
CAS
PubMed
Google Scholar
Gothilf Y, Coon SL, Toyama R, Chitnis A, Namboodiri MA, Klein DC: Zebrafish serotonin N-acetyltransferase-2: marker for development of pineal photoreceptors and circadian clock function. Endocrinology. 1999, 140 (10): 4895-4903. 10.1210/en.140.10.4895.
CAS
PubMed
Google Scholar
Mano H, Kojima D, Fukada Y: Exo-rhodopsin: a novel rhodopsin expressed in the zebrafish pineal gland. Brain Res Mol Brain Res. 1999, 73 (1-2): 110-118. 10.1016/S0169-328X(99)00242-9.
CAS
PubMed
Google Scholar
Asaoka Y, Mano H, Kojima D, Fukada Y: Pineal expression-promoting element (PIPE), a cis-acting element, directs pineal-specific gene expression in zebrafish. Proc Natl Acad Sci USA. 2002, 99 (24): 15456-15461. 10.1073/pnas.232444199.
PubMed Central
CAS
PubMed
Google Scholar
Falcon J, Gothilf Y, Coon SL, Boeuf G, Klein DC: Genetic, temporal and developmental differences between melatonin rhythm generating systems in the teleost fish pineal organ and retina. J Neuroendocrinol. 2003, 15 (4): 378-382. 10.1046/j.1365-2826.2003.00993.x.
CAS
PubMed
Google Scholar
Vuilleumier R, Besseau L, Boeuf G, Piparelli A, Gothilf Y, Gehring WG, Klein DC, Falcon J: Starting the zebrafish pineal circadian clock with a single photic transition. Endocrinology. 2006, 147 (5): 2273-2279. 10.1210/en.2005-1565.
CAS
PubMed
Google Scholar
Pierce LX, Noche RR, Ponomareva O, Chang C, Liang JO: Novel functions for Period 3 and Exo-rhodopsin in rhythmic transcription and melatonin biosynthesis within the zebrafish pineal organ. Brain Res. 2008, 1223: 11-24. 10.1016/j.brainres.2008.05.020.
PubMed Central
CAS
PubMed
Google Scholar
Klein DC: Evolution of the vertebrate pineal gland: the AANAT hypothesis. Chronobiol Int. 2006, 23 (1-2): 5-20. 10.1080/07420520500545839.
CAS
PubMed
Google Scholar
Carr AJ, Whitmore D: Imaging of single light-responsive clock cells reveals fluctuating free-running periods. Nat Cell Biol. 2005, 7 (3): 319-321. 10.1038/ncb1232.
CAS
PubMed
Google Scholar
Kazimi N, Cahill GM: Development of a circadian melatonin rhythm in embryonic zebrafish. Brain Res Dev Brain Res. 1999, 117 (1): 47-52. 10.1016/S0165-3806(99)00096-6.
CAS
PubMed
Google Scholar
Lahiri K, Vallone D, Gondi SB, Santoriello C, Dickmeis T, Foulkes NS: Temperature regulates transcription in the zebrafish circadian clock. PLoS Biol. 2005, 3 (11): e351-10.1371/journal.pbio.0030351.
PubMed Central
PubMed
Google Scholar
Kobayashi Y, Ishikawa T, Hirayama J, Daiyasu H, Kanai S, Toh H, Fukuda I, Tsujimura T, Terada N, Kamei Y, et al.: Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish. Genes Cells. 2000, 5 (9): 725-738. 10.1046/j.1365-2443.2000.00364.x.
CAS
PubMed
Google Scholar
Liu Q, Frey RA, Babb-Clendenon SG, Liu B, Francl J, Wilson AL, Marrs JA, Stenkamp DL: Differential expression of photoreceptor-specific genes in the retina of a zebrafish cadherin2 mutant glass onion and zebrafish cadherin4 morphants. Exp Eye Res. 2007, 84 (1): 163-175. 10.1016/j.exer.2006.09.011.
PubMed Central
CAS
PubMed
Google Scholar
Bertolucci C, Sovrano VA, Magnone MC, Foa A: Role of suprachiasmatic nuclei in circadian and light-entrained behavioral rhythms of lizards. Am J Physiol Regul Integr Comp Physiol. 2000, 279 (6): R2121-2131.
CAS
PubMed
Google Scholar
Foa A, Brandstatter R, Bertolucci C: The circadian system of ruin lizards: a seasonally changing neuroendocrine loop?. Chronobiol Int. 2006, 23 (1-2): 317-327. 10.1080/07420520500521954.
CAS
PubMed
Google Scholar
Kramer BM, Song JY, Westphal NJ, Jenks BG, Roubos EW: Regulation of neurons in the suprachiasmatic nucleus of Xenopus laevis. Comp Biochem Physiol B Biochem Mol Biol. 2002, 132 (1): 269-274. 10.1016/S1096-4959(01)00539-5.
PubMed
Google Scholar
Ziv L, Gothilf Y: Circadian time-keeping during early stages of development. Proc Natl Acad Sci USA. 2006, 103 (11): 4146-4151. 10.1073/pnas.0600571103.
PubMed Central
CAS
PubMed
Google Scholar
Kljavin IJ: Early development of photoreceptors in the ventral retina of the zebrafish embryo. J Comp Neurol. 1987, 260 (3): 461-471. 10.1002/cne.902600311.
CAS
PubMed
Google Scholar
Kennedy BN, Stearns GW, Smyth VA, Ramamurthy V, van Eeden F, Ankoudinova I, Raible D, Hurley JB, Brockerhoff SE: Zebrafish rx3 and mab21l2 are required during eye morphogenesis. Dev Biol. 2004, 270 (2): 336-349. 10.1016/j.ydbio.2004.02.026.
CAS
PubMed
Google Scholar
Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D: Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell. 2007, 129 (7): 1389-1400. 10.1016/j.cell.2007.04.041.
CAS
PubMed
Google Scholar
Dickmeis T, Lahiri K, Nica G, Vallone D, Santoriello C, Neumann CJ, Hammerschmidt M, Foulkes NS: Glucocorticoids play a key role in circadian cell cycle rhythms. PLoS Biol. 2007, 5 (4): e78-10.1371/journal.pbio.0050078.
PubMed Central
PubMed
Google Scholar
Cashmore AR: Cryptochromes: enabling plants and animals to determine circadian time. Cell. 2003, 114 (5): 537-543. 10.1016/j.cell.2003.08.004.
CAS
PubMed
Google Scholar
Ishikawa T, Hirayama J, Kobayashi Y, Todo T: Zebrafish CRY represses transcription mediated by CLOCK-BMAL heterodimer without inhibiting its binding to DNA. Genes Cells. 2002, 7 (10): 1073-1086. 10.1046/j.1365-2443.2002.00579.x.
CAS
PubMed
Google Scholar
Philp AR, Bellingham J, Garcia-Fernandez J, Foster RG: A novel rod-like opsin isolated from the extra-retinal photoreceptors of teleost fish. FEBS Lett. 2000, 468 (2-3): 181-188. 10.1016/S0014-5793(00)01217-5.
CAS
PubMed
Google Scholar
Takanaka Y, Okano T, Iigo M, Fukada Y: Light-Dependent Expression of Pinopsin Gene in Chicken Pineal Gland. Journal of Neurochemistry. 1998, 70 (3): 908-913. 10.1046/j.1471-4159.1998.70030908.x.
CAS
PubMed
Google Scholar
Rajendran RR, Van Niel EE, Stenkamp DL, Cunningham LL, Raymond PA, Gonzalez-Fernandez F: Zebrafish interphotoreceptor retinoid-binding protein: differential circadian expression among cone subtypes. J Exp Biol. 1996, 199 (12): 2775-2787.
CAS
PubMed
Google Scholar
Springer AD, Gaffney JS: Retinal projections in the goldfish: a study using cobaltous-lysine. J Comp Neurol. 1981, 203 (3): 401-424. 10.1002/cne.902030306.
CAS
PubMed
Google Scholar
Springer AD, Mednick AS: Selective innervation of the goldfish suprachiasmatic nucleus by ventral retinal ganglion cell axons. Brain Res. 1984, 323 (2): 293-296. 10.1016/0006-8993(84)90300-7.
CAS
PubMed
Google Scholar
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of Embryonic Development of the Zebrafish. Developmental Dynamics. 1995, 203: 253-310.
CAS
PubMed
Google Scholar
Malicki J, Neuhauss SC, Schier AF, Solnica-Krezel L, Stemple DL, Stainier DY, Abdelilah S, Zwartkruis F, Rangini Z, Driever W: Mutations affecting development of the zebrafish retina. Development. 1996, 123: 263-273.
CAS
PubMed
Google Scholar
Schier AF, Neuhauss SC, Harvey M, Malicki J, Solnica-Krezel L, Stainier DY, Zwartkruis F, Abdelilah S, Stemple DL, Rangini Z, et al.: Mutations affecting the development of the embryonic zebrafish brain. Development. 1996, 123: 165-178.
CAS
PubMed
Google Scholar
Liang JO, Etheridge A, Hantsoo L, Rubinstein AL, Nowak SJ, Izpisua Belmonte JC, Halpern ME: Asymmetric nodal signaling in the zebrafish diencephalon positions the pineal organ. Development. 2000, 127 (23): 5101-5112.
CAS
PubMed
Google Scholar
Krauss S, Concordet JP, Ingham PW: A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell. 1993, 75 (7): 1431-1444. 10.1016/0092-8674(93)90628-4.
CAS
PubMed
Google Scholar
Pierce LX, Harrison D, Liang JO: The Time Reaper 5-Channel Automatic Liquid Dispenser: a new tool for studying zebrafish development. Zebrafish. 2007, 4 (3): 169-177. 10.1089/zeb.2007.0511.
PubMed
Google Scholar
Laird DW, Molday RS: Evidence agains the role of rhodopsin in rod outer segment binding to RPE cells. Invest Ophthalmol Vis Sci. 1988, 29: 419-428.
CAS
PubMed
Google Scholar
Hicks D, Molday RS: Differential immunogold-dextran labeling of bovine and frog rod and cone cells using monoclonal antibodies against bovine rhodopsin. Exp Eye Res. 1986, 42 (1): 55-71. 10.1016/0014-4835(86)90017-5.
CAS
PubMed
Google Scholar
Liman ER, Tytgat J, Hess P: Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron. 1992, 9 (5): 861-871. 10.1016/0896-6273(92)90239-A.
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215 (3): 403-410.
CAS
PubMed
Google Scholar