Beidler L, Smallman R: Renewal of cells within taste buds. J Cell Biol. 1965, 27: 263-272. 10.1083/jcb.27.2.263.
Article
PubMed Central
CAS
PubMed
Google Scholar
Conger AD, Wells MA: Radiation and aging effect on taste structure and function. Radiation Research. 1969, 37: 31-49. 10.2307/3572749.
Article
CAS
PubMed
Google Scholar
Moulton DJ: Cell renewal in the olfactory epithelium of the mouse. Conference on Odors: Evaluation, Utilization and Control. Edited by: Cain WS. 1974, New York: New York Academy of Science, 52-61.
Google Scholar
Graziadei PPC, Monti- Graziadei GA: The olfactory system: A model for the study of neurogenesis and axon regeneration in mammals. Neuronal Plasticity. Edited by: Cotman CW. 1978, New York: Raven, 131-153.
Google Scholar
Farbman AI: Renewal of taste bud cells in rat circumvallate papillae. Cell Tissue Kinet. 1980, 13 (4): 349-357.
CAS
PubMed
Google Scholar
Schwob JE: Neural regeneration and the peripheral olfactory system. Anat Rec. 2002, 269: 33-49. 10.1002/ar.10047.
Article
PubMed
Google Scholar
Roper SD: Signal transduction and information processing in mammalian taste buds. Eur J Physiol. 2007, 454: 759-776. 10.1007/s00424-007-0247-x.
Article
CAS
Google Scholar
Chaudhari N, Roper SD: The cell biology of taste. J Cell Biol. 2010, 190: 285-296. 10.1083/jcb.201003144.
Article
PubMed Central
CAS
PubMed
Google Scholar
Farbman AI: Fine structure of the taste bud. J Ultrastruct Res. 1965, 12: 328-350. 10.1016/S0022-5320(65)80103-4.
Article
CAS
PubMed
Google Scholar
Murray RG: Cellular relations in mouse circumvallate taste buds. Microscopy Res and Technique. 1973, 26: 209-224.
Article
Google Scholar
Takeda M, Hoshino T: Fine structure of taste buds in the rat. Arch Histol Jpn. 1975, 37: 395-413.
Article
CAS
PubMed
Google Scholar
Lawton DM, Furness DN, Lindemann B, Hackney CM: Localization of the glutamate- aspartate transporter, GLAST, in rat taste buds. Eur J Neurosci. 2000, 12 (9): 3163-3171. 10.1046/j.1460-9568.2000.00207.x.
Article
CAS
PubMed
Google Scholar
Bartel DL, Sullivan SL, Lavoie EG, Sevigny J, Finger TE: Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds. J Comp Neurol. 2006, 497 (1): 1-12. 10.1002/cne.20954.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vandenbeuch A, Clapp TR, Kinnamon SC: Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci. 2008, 9: 1-10.1186/1471-2202-9-1.
Article
PubMed Central
PubMed
Google Scholar
Clapp TR, Stone LM, Margolskee RF, Kinnamon SC: Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction. BMC Neurosci. 2001, 2: 6-10.1186/1471-2202-2-6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Miyoshi MA, Abe K, Emori Y: IP(3) receptor type 3 and PLCbeta2 are co-expressed with taste receptors T1R and T2R in rat taste bud cells. Chem Senses. 2001, 26 (3): 259-265. 10.1093/chemse/26.3.259.
Article
CAS
PubMed
Google Scholar
Pérez CA, Liquan Huang L, Rong M, Kozak JA, Preuss AK, Zhang H, Max M, Margolskee RF: A transient receptor potential channel expressed in taste receptor cells. Nature Neuroscience. 2002, 5: 1169-1176. 10.1038/nn952.
Article
PubMed
Google Scholar
Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker C, Ryba NJ: Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell. 2003, 112: 293-301. 10.1016/S0092-8674(03)00071-0.
Article
CAS
PubMed
Google Scholar
Clapp TR, Yang R, Stoick CL, Kinnamon SC, Kinnamon JC: Morphologic characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway. J Comp Neurol. 2004, 468 (3): 311-321. 10.1002/cne.10963.
Article
CAS
PubMed
Google Scholar
Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC: ATP signaling is crucial for communication from taste buds to gustatory nerves. Science. 2005, 310: 1495-1499. 10.1126/science.1118435.
Article
CAS
PubMed
Google Scholar
DeFazio RA, Dvoryanchikov G, Maruyama Y, Kim JW, Pereira E, Roper SD, Chaudhari N: Separate populations of receptor cells and presynaptic cells in mouse taste buds. J Neurosci. 2006, 26 (15): 3971-3980. 10.1523/JNEUROSCI.0515-06.2006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Damak S, Mosinger B, Margolskee RF: Transsynaptic transport of wheat germ agglutinin expressed in a subset of type II taste cells of transgenic mice. BMC Neurosci. 2008, 9: 96-10.1186/1471-2202-9-96.
Article
PubMed Central
PubMed
Google Scholar
Yee CL, Yang R, Bottger B, Finger TE, Kinnamon JC: "Type III" cells of rat taste buds: immunohistochemical and ultrastructural studies of neuron-specific enolase, protein gene product 9.5, and serotonin. J Comp Neurol. 2001, 440 (1): 97-108. 10.1002/cne.1372.
Article
CAS
PubMed
Google Scholar
Huang YA, Maruyama Y, Stimac R, Roper SD: Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste. J Physiol. 2008, 586 (Pt 12): 2903-2912.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kataoka S, Yang R, Ishimaru Y, Matsunami H, Sevigny J, Kinnamon JC, Finger TE: The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse. Chem Senses. 2008, 33 (3): 243-254.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang R, Crowley HH, Rock ME, Kinnamon JC: Taste cells with synapses in rat circumvallate papillae display SNAP-25-like immunoreactivity. J Comp Neurol. 2000, 424 (2): 205-215. 10.1002/1096-9861(20000821)424:2<205::AID-CNE2>3.0.CO;2-F.
Article
CAS
PubMed
Google Scholar
Huang YJ, Maruyama R, Lu KS, Pereira E, Plonsky I, Baur JE, Wu D, Roper SD: Mouse taste buds use serotonin as a neurotransmitter. J Neurosci. 2005, 25: 843-847. 10.1523/JNEUROSCI.4446-04.2005.
Article
CAS
PubMed
Google Scholar
Clapp TR, Medler MF, Damak S, Margolskee R, Kinnamon SC: Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25. BMC Biol. 2006, 4: 7-10.1186/1741-7007-4-7.
Article
PubMed Central
PubMed
Google Scholar
Delay RJ, Kinnamon JC, Roper SD: Ultrastructure of mouse vallate taste buds: II. Cell types and cell lineage. J Comp Neurol. 1986, 253 (2): 242-252. 10.1002/cne.902530210.
Article
CAS
PubMed
Google Scholar
Miura H, Kusakabe Y, Harada S: Cell lineage and differentiation in taste buds. Arch Histol Cytol. 2006, 69 (4): 209-225. 10.1679/aohc.69.209.
Article
CAS
PubMed
Google Scholar
Barlow LA, Northcutt RG: Embryonic origin of amphibian taste buds. Dev Biol. 1995, 169 (1): 273-285. 10.1006/dbio.1995.1143.
Article
CAS
PubMed
Google Scholar
Stone LM, Finger TE, Tam PP, Tan SS: Taste receptor cells arise from local epithelium, not neurogenic ectoderm. Proc Natl Acad Sci USA. 1995, 92 (6): 1916-1920. 10.1073/pnas.92.6.1916.
Article
PubMed Central
CAS
PubMed
Google Scholar
Thirumangalathu S, Harlow DE, Driskell AL, Krimm RF, Barlow LA: Fate mapping of mammalian embryonic taste bud progenitors. Development. 2009, 136 (9): 1519-1528. 10.1242/dev.029090.
Article
PubMed Central
CAS
PubMed
Google Scholar
Okubo T, Pevny LH, Hogan BL: Sox2 is required for development of taste bud sensory cells. Genes Dev. 2006, 20: 2654-2659. 10.1101/gad.1457106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Asano-Miyoshi M, Hamamichi R, Emori Y: Cytokeratin 14 is expressed in immature cells in rat taste buds. J Mol Histol. 2008, 39 (2): 193-199. 10.1007/s10735-007-9151-0.
Article
CAS
PubMed
Google Scholar
Okubo T, Clark C, Hogan BL: Cell lineage mapping of taste bud cells and keratinocytes in the mouse tongue and soft palate. Stem Cells. 2009, 27 (2): 442-450. 10.1634/stemcells.2008-0611.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sullivan JM, Borecki AA, Oleskevish S: Stem and progenitor cell compartments within adult mouse taste buds. Eur J Neurosci. 2010, 31: 1549-1560.
PubMed
Google Scholar
Ueda K, Ichimori Y, Maruyama H, Murakami Y, Fujii M, Honma S, Wakisaka S: Cell-type specific occurrence of apoptosis in taste buds of the rat circumvallate papilla. Arch Histol Cytol. 2008, 71: 59-67. 10.1679/aohc.71.59.
Article
CAS
PubMed
Google Scholar
Takeda M, Suzuki Y, Obara N, Nagai Y: Apoptosis in mouse taste buds after denervation. Cell Tissue Res. 1996, 286: 55-62. 10.1007/s004410050674.
Article
CAS
PubMed
Google Scholar
Zeng Q, Oakley B: p53 and Bax: Putative death factors in taste cell turnover. J Comp Neurol. 1999, 413: 168-180. 10.1002/(SICI)1096-9861(19991011)413:1<168::AID-CNE12>3.0.CO;2-Y.
Article
CAS
PubMed
Google Scholar
Zeng Q, Kwan A, Oakley D: Gustatory innervations and bax-dependent caspase-2: Participants in the life and death pathways of mouse taste receptor cells. J Comp Neurol. 2000, 424: 640-650. 10.1002/1096-9861(20000904)424:4<640::AID-CNE6>3.0.CO;2-N.
Article
CAS
PubMed
Google Scholar
Huang YJ, Lu JS: TUNEL staining and electron microscopy studies of apoptotic changes in the guinea pig vallate taste cells after unilateral glossopharyngeal denervation. Anat Embryol. 2001, 204: 493-501. 10.1007/s429-001-8006-1.
Article
CAS
PubMed
Google Scholar
Nosrat CA, Ebendal T, Olson L: Differential expression of brain-derived neurotrophic factor and neurotrophin 3 mRNA in lingual papillae and taste buds indicates roles in gustatory and somatosensory innervation. J comp Neurol. 1996, 376: 587-602. 10.1002/(SICI)1096-9861(19961223)376:4<587::AID-CNE7>3.0.CO;2-Y.
Article
CAS
PubMed
Google Scholar
Morris-Wiman J, Sego R, Brinkley L, Dolce D: The effects of sialoadenectomy and exogenous EGF on taste bud morphology and maintenance. Chem Senses. 2000, 25: 9-19. 10.1093/chemse/25.1.9.
Article
CAS
PubMed
Google Scholar
Takeda M, Suzuki Y, Obara N, Uchida N, Kawakoshi K: Expression of GDNF and GFR α1 in mouse taste bud cells. J Comp Neurol. 2004, 479: 94-102. 10.1002/cne.20315.
Article
CAS
PubMed
Google Scholar
Nakamura S, Kawai T, Kamakura T, Ookura T: TGF-β3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells. In Vitro Cell Dev Biol Anim. 2010, 46: 36-44. 10.1007/s11626-009-9239-9.
Article
CAS
PubMed
Google Scholar
Morgan DO: Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol. 1997, 13: 261-291. 10.1146/annurev.cellbio.13.1.261.
Article
CAS
PubMed
Google Scholar
Sherr CJ, Roberts JM: Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 2004, 18: 2699-2711. 10.1101/gad.1256504.
Article
CAS
PubMed
Google Scholar
Sherr CJ, Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999, 13: 1501-1512. 10.1101/gad.13.12.1501.
Article
CAS
PubMed
Google Scholar
Sherr CJ: The Pezcoller lecture: cancer cell cycles revisited. Cancer Res. 2000, 60: 3689-3695.
CAS
PubMed
Google Scholar
Durand B, Fero ML, Roberts JM, Raff MC: p27Kip1 alters the response of cells to mitogen and is part of a cell-intrinsic timer that arrests the cell cycle and initiates differentiation. Curr Biol. 1998, 8: 431-440. 10.1016/S0960-9822(98)70177-0.
Article
CAS
PubMed
Google Scholar
Nakayama K, Nakayama K: Cip/Kip cyclin-dependent kinase inhibitors: brakes of the cell cycle engine during development. Bioessays. 1998, 20: 1020-1029. 10.1002/(SICI)1521-1878(199812)20:12<1020::AID-BIES8>3.3.CO;2-4.
Article
CAS
PubMed
Google Scholar
Conlon I, Raff M: Size control in animal development. Cell. 1999, 96: 235-244. 10.1016/S0092-8674(00)80563-2.
Article
CAS
PubMed
Google Scholar
Durand B, Raff M: A cell-intrinsic timer that operates during oligodendrocyte development. Bioessays. 2000, 22: 64-71. 10.1002/(SICI)1521-1878(200001)22:1<64::AID-BIES11>3.0.CO;2-Q.
Article
CAS
PubMed
Google Scholar
Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM, Kaushansky K, Roberts JM: A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip1-deficient mice. Cell. 1996, 85: 733-744. 10.1016/S0092-8674(00)81239-8.
Article
CAS
PubMed
Google Scholar
Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, Khanam D, Hayday AC, Frohman LA, Koff A: Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell. 1996, 85: 721-732. 10.1016/S0092-8674(00)81238-6.
Article
CAS
PubMed
Google Scholar
Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY, Nakayama K: Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell. 1996, 85: 707-720. 10.1016/S0092-8674(00)81237-4.
Article
CAS
PubMed
Google Scholar
Dyer MA, Cepko CL: p27Kip1 and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations. J Neurosci. 2001, 21 (12): 4259-4271.
CAS
PubMed
Google Scholar
Lavine KJ, Schmid GJ, Smith CS, Ornitz DM: Novel tool to suppress cell proliferation in vivo demonstrates that myocardial and coronary vascular growth represent distinct developmental programs. Dev Dyn. 2008, 237 (3): 713-724. 10.1002/dvdy.21468.
Article
CAS
PubMed
Google Scholar
Hirota M, Ito T, Okudela K, Kawabe R, Hayashi H, Yazawa T, Fujita K, Kitamura H: Expression of cyclin-dependent kinase inhibitors in taste buds of mouse and hamster. Tissue Cell. 2001, 33 (1): 25-32. 10.1054/tice.2000.0146.
Article
CAS
PubMed
Google Scholar
Reiner DJ, Jan TA, Boughter JD, Li C-X, Lu L, Williams RW, Waters RS: Genetic analysis of tongue size and taste papillae number and size in recombinant inbred strains of mice. Chem Senses. 2008, 33: 693-707. 10.1093/chemse/bjn025.
Article
PubMed Central
CAS
PubMed
Google Scholar
Patel AV, Huang T, Krimm RF: Lingual and palatal gustatory afferents each depend on both BDNF and NT-4, but the dependence is greater for lingual than palatal afferents. J Comp Neurol. 2010, 518 (16): 3290-3301. 10.1002/cne.22400.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mistretta CM, Goosens KA, Farinas I, Reichardt LF: Alterations in size, number, and morphology of gustatory papillai and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs. J Comp Neurol. 1999, 409: 13-24. 10.1002/(SICI)1096-9861(19990621)409:1<13::AID-CNE2>3.0.CO;2-O.
Article
PubMed Central
CAS
PubMed
Google Scholar
Casaccia-Bonnefil P, Tikoo R, Kiyokawa H, Friedrich V, Chao MV, Koff A: Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor p27Kip1. Genes Dev. 1997, 11: 2335-2346. 10.1101/gad.11.18.2335.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen P, Segil N: p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development. 1999, 126: 1581-1590.
CAS
PubMed
Google Scholar
Löwenheim H, Furness DN, Kil J, Zinn C, Gültig K, Fero ML, Frost D, Gummer AW, Roberts JM, Rubel EW, Hackney CM, Zenner HP: Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of corti. Proc Natl Acad Sci USA. 1999, 96: 4084-4088. 10.1073/pnas.96.7.4084.
Article
PubMed Central
PubMed
Google Scholar
Dyer MA, Cepko CL: Control of Müller glial cell proliferation and activation following retinal injury. Nat Neurosci. 2000, 3 (9): 873-880. 10.1038/78774.
Article
CAS
PubMed
Google Scholar
Levine EM, Close J, Fero M, Ostrovsky A, Reh TA: p27Kip1 regulates cell cycle withdrawal of late multipotent progenitor cells in the mammalian retina. Dev Biol. 2000, 219: 299-314. 10.1006/dbio.2000.9622.
Article
CAS
PubMed
Google Scholar
Miyazawa K, Himi T, Garcia V, Yamagishi H, Sato S, Ishizaki Y: A role for p27/Kip1 in the control of cerebellar granule cell precursor proliferation. J Neurosci. 2000, 20: 5756-5763.
CAS
PubMed
Google Scholar
Defoe DM, Adams LB, Sun J, Wisecarver SN, Levine EM: Defects in retinal pigment epithelium cell proliferation and retinal attachment in mutant mice with p27(Kip1) gene ablation. Mol Vis. 2007, 13: 273-286.
PubMed Central
CAS
PubMed
Google Scholar
Li X, Tang X, Jablonska B, Aguirre A, Gallo V, Luskin MB: p27KIP1 regulates neurogenesis in the rostral migratory stream and olfactory bulb of the postnatal mouse. J Neurosci. 2009, 29: 2902-2914. 10.1523/JNEUROSCI.4051-08.2009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Muzumdar MD, Luo L, Zong H: Modeling sporadic loss of heterozygosity in mice by using mosaic analysis with double markers (MADM). Proc Natl Acad Sci USA. 2007, 104: 4495-4500. 10.1073/pnas.0606491104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cohn ZJ, Kim A, Huang L, Brand J, Wang H: Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells. BMC Neurosci. 2010, 11: 72-10.1186/1471-2202-11-72.
Article
PubMed Central
PubMed
Google Scholar
Bryja V, Pacherník J, Soucek K, Horvath V, Dvorák P, Hampl A: Increased apoptosis in differentiating p27-deficient mouse embryonic stem cells. Cell Mol Life Sci. 2004, 61: 1384-1400. 10.1007/s00018-004-4081-4.
Article
CAS
PubMed
Google Scholar
Morrison SJ, Uchida N, Weissman IL: The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol. 1995, 11: 35-71. 10.1146/annurev.cb.11.110195.000343.
Article
CAS
PubMed
Google Scholar
Hidalgo A, ffrench-Constant C: The control of cell number during central nervous system development in flies and mice. Mech Dev. 2003, 120: 1311-1325. 10.1016/j.mod.2003.06.004.
Article
CAS
PubMed
Google Scholar
Cho YK, Farbman AI, Smith DV: The timing of alpha-gustducin expression during cell renewal in rat vallate taste buds. Chem Senses. 1998, 23 (6): 735-742. 10.1093/chemse/23.6.735.
Article
CAS
PubMed
Google Scholar
Miura H, Kato H, Kusakabe Y, Ninomiya Y, Hino A: Temporal changes in NCAM immunoreactivity during taste cell differentiation and cell lineage relationships in taste buds. Chem Senses. 2005, 30: 367-375. 10.1093/chemse/bji031.
Article
CAS
PubMed
Google Scholar
Ohmoto M, Matsumoto I, Misaka T, Abe K: Taste receptor cells express voltage-dependent potassium channels in a cell age-specific manner. Chem Senses. 2006, 31: 739-746. 10.1093/chemse/bjl016.
Article
CAS
PubMed
Google Scholar
Hamamichi R, Asano-Miyoshi M, Emori Y: Taste bud contains both short-lived and long-lived cell populations. Neuroscience. 2006, 141 (4): 2129-2138. 10.1016/j.neuroscience.2006.05.061.
Article
CAS
PubMed
Google Scholar
Oike H, Matsumoto I, Abe K: Group IIA phospholipase A2 is coexpressed with SNAP-25 in mature taste receptor cells of rat circumvallate papillae. J Comp Neurol. 2006, 494: 876-886. 10.1002/cne.20848.
Article
CAS
PubMed
Google Scholar
Zhang C, Cotter M, Lawton A, Oakley B, Wong L, Zeng Q: Keratin 18 is associated with a subset of older taste cells in the rat. Differentiation. 1995, 59: 155-162. 10.1046/j.1432-0436.1995.5930155.x.
Article
CAS
PubMed
Google Scholar
Defoe DM, Levine EM: Expression of the cyclin-dependent kinase inhibitor p27Kip1 by developing retinal pigment epithelium. Gene Expr Patterns. 2003, 3: 615-619. 10.1016/S1567-133X(03)00120-0.
Article
CAS
PubMed
Google Scholar
Yoshida K, Nakayama K, Kase S, Nagahama H, Harada T, Ikeda H, Harada C, Imaki J, Ohgami K, Shiratori K, Ohno S, Nishi S, Nakayama KI: Involvement of p27(KIP1) in proliferation of the retinal pigment epithelium and ciliary body. Anat Embryol (Berl). 2004, 208 (2): 145-150. 10.1007/s00429-004-0382-5.
Article
CAS
Google Scholar
Gui H, Li S, Matise MP: A cell-autonomous requirement for Cip/Kip cyclin-kinase inhibitors in regulating neuronal cell cycle exit but not differentiation in the developing spinal cord. Dev Biol. 2007, 301: 14-26. 10.1016/j.ydbio.2006.10.035.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yoshida K, Kase S, Nakayama K, Nagahama H, Harada T, Ikeda H, Harada C, Imaki J, Ohgami K, Shiratori K, Ohno S, Nakayama KI: Distribution of p27(KIP1), cyclin D1, and proliferating cell nuclear antigen after retinal detachment. Graefes Arch Clin Exp Ophthalmol. 2004, 242 (5): 437-441. 10.1007/s00417-004-0861-7.
Article
CAS
PubMed
Google Scholar
Ma H, Yang R, Thomas SM, Kinnamon JC: Qualitative and quantitative differences between taste buds of the rat and mouse. BMC Neurosci. 2007, 8: 5-10.1186/1471-2202-8-5.
Article
PubMed Central
PubMed
Google Scholar
Kogen SC, Doherty M, Gitschier J: An improved method for prenatal diagnosis of genetic diseases by analysis of amplified DNA sequences. N Engl J Med. 1987, 317: 985-990. 10.1056/NEJM198710153171603.
Article
Google Scholar
Toh H, Rittman G, Mackenzie IC: Keratin expression in taste bud cells of the circumvallate and foliate papillae of adult mice. Epithelial Cell Biol. 1993, 2: 126-133.
CAS
PubMed
Google Scholar
Kemler R, Brulet P, Schnebelen MT, Gaillard J, Jacob F: Reactivity of monoclonal antibodies against intermediate filament proteins during embryonic development. J Embryol Exp Morphol. 1981, 64: 45-60.
CAS
PubMed
Google Scholar
Kerr JFR, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972, 26: 239-257. 10.1038/bjc.1972.33.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wilson JW, Potten CS: Morphological recognition of apoptotic cells. Apoptosis: A practical approach. Edited by: Studzinski GP. 1999, New York: Oxford University Press, 19-39.
Google Scholar
Gavrieli Y, Sherman Y, Ben-Sasson SA: Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992, 119 (3): 493-501. 10.1083/jcb.119.3.493.
Article
CAS
PubMed
Google Scholar
Kurki P, Vanderlaan M, Dolbeare F, Gray J, Tan EM: Expression of proliferating cell nuclear antigen (PCNA)/cyclin during the cell cycle. Exp Cell Res. 1986, 166: 209-219. 10.1016/0014-4827(86)90520-3.
Article
CAS
PubMed
Google Scholar
Bravo R, Macdonald-Bravo H: Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle: association with DNA replication sites. J Cell Biol. 1987, 105: 1549-1554. 10.1083/jcb.105.4.1549.
Article
CAS
PubMed
Google Scholar
Ozdener H, Yee KK, Cao J, Brand JG, Teeter JH, Rawson NE: Characterization and long-term maintenance of rat taste cells in culture. Chem Senses. 2006, 31: 279-290.
Article
CAS
PubMed
Google Scholar
Luo X, Okubo T, Randell S, Hogan BL: Culture of endodermal stem/progenitor cells of the mouse tongue. In Vitro Cell Dev Biol Anim. 2009, 45 (1-2): 44-54. 10.1007/s11626-008-9149-2.
Article
CAS
PubMed
Google Scholar