Marr D: Simple memory: a theory for archicortex. Philos Trans R Soc Lond B Biol Sci. 1971, 262: 23-81. 10.1098/rstb.1971.0078.
Article
CAS
PubMed
Google Scholar
McNaughton BL, Morris RGM: Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci. 1987, 10: 408-415. 10.1016/0166-2236(87)90011-7.
Article
Google Scholar
Treves A, Rolls ET: Computational analysis of the role of the hippocampus in memory. Hippocampus. 1994, 4: 374-391. 10.1002/hipo.450040319.
Article
CAS
PubMed
Google Scholar
Lee I, Yoganarasimha D, Rao G, Knierim JJ: Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature. 2004, 430: 456-459. 10.1038/nature02739.
Article
CAS
PubMed
Google Scholar
Leutgeb S, Leutgeb JK, Treves A, Moser MB, Moser EI: Distinct ensemble codes in hippocampal areas CA3 and CA1. Science. 2004, 305: 1295-1298. 10.1126/science.1100265.
Article
CAS
PubMed
Google Scholar
Vazdarjanova A, Guzowski JF: Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J Neurosci. 2004, 24: 6489-6496. 10.1523/JNEUROSCI.0350-04.2004.
Article
CAS
PubMed
Google Scholar
Bakker A, Kirwan CB, Miller M, Stark CE: Pattern separation in the human hippocampal CA3 and dentate gyrus. Science. 2008, 319: 1640-1642. 10.1126/science.1152882.
Article
PubMed Central
CAS
PubMed
Google Scholar
Guzowski JF, Knierim JJ, Moser EI: Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron. 2004, 44: 581-584. 10.1016/j.neuron.2004.11.003.
Article
CAS
PubMed
Google Scholar
McClelland JL, Goddard NH: Considerations arising from a complementary learning systems perspective on hippocampus and neocortex. Hippocampus. 1996, 6: 654-665. 10.1002/(SICI)1098-1063(1996)6:6<654::AID-HIPO8>3.0.CO;2-G.
Article
CAS
PubMed
Google Scholar
O'Reilly RC, Rudy JW: Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychol Rev. 2001, 108: 311-345. 10.1037/0033-295X.108.2.311.
Article
PubMed
Google Scholar
O'Reilly RC, McClelland JL: Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus. 1994, 4: 661-682. 10.1002/hipo.450040605.
Article
PubMed
Google Scholar
Bennett MR, Gibson WG, Robinson J: Dynamics of the CA3 pyramidal neuron autoassociative memory network in the hippocampus. Philos Trans R Soc Lond B Biol Sci. 1994, 343: 167-187. 10.1098/rstb.1994.0019.
Article
CAS
PubMed
Google Scholar
de Almeida L, Idiart M, Lisman JE: Memory retrieval time and memory capacity of the CA3 network: role of gamma frequency oscillations. Learn Mem. 2007, 14: 795-806. 10.1101/lm.730207.
Article
PubMed Central
PubMed
Google Scholar
Jensen O, Idiart MA, Lisman JE: Physiologically realistic formation of autoassociative memory in networks with theta/gamma oscillations: role of fast NMDA channels. Learn Mem. 1996, 3: 243-256. 10.1101/lm.3.2-3.243.
Article
CAS
PubMed
Google Scholar
Gloveli T, Dugladze T, Rotstein HG, Traub RD, Monyer H, Heinemann U, Whittington MA, Kopell NJ: Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. Proc Natl Acad Sci USA. 2005, 102: 13295-13300. 10.1073/pnas.0506259102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hasselmo ME, Barkai E: Cholinergic modulation of activity-dependent synaptic plasticity in the piriform cortex and associative memory function in a network biophysical simulation. J Neurosci. 1995, 15: 6592-6604.
CAS
PubMed
Google Scholar
Menschik ED, Finkel LH: Cholinergic neuromodulation and Alzheimer's disease: from single cells to network simulations. Prog Brain Res. 1999, 121: 19-45. full_text.
Article
CAS
PubMed
Google Scholar
Hasselmo ME: A model of episodic memory: mental time travel along encoded trajectories using grid cells. Neurobiol Learn Mem. 2009, 92: 559-573. 10.1016/j.nlm.2009.07.005.
Article
PubMed Central
PubMed
Google Scholar
Hasselmo ME, Wyble BP: Free recall and recognition in a network model of the hippocampus: simulating effects of scopolamine on human memory function. Behav Brain Res. 1997, 89: 1-34. 10.1016/S0166-4328(97)00048-X.
Article
CAS
PubMed
Google Scholar
Norman KA, O'Reilly RC: Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Psychol Rev. 2003, 110: 611-646. 10.1037/0033-295X.110.4.611.
Article
PubMed
Google Scholar
Mehaffey WH, Doiron B, Maler L, Turner RW: Deterministic multiplicative gain control with active dendrites. J Neurosci. 2005, 25: 9968-9977. 10.1523/JNEUROSCI.2682-05.2005.
Article
CAS
PubMed
Google Scholar
Prescott SA, De Koninck Y: Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proc Natl Acad Sci USA. 2003, 100: 2076-2081. 10.1073/pnas.0337591100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Amaral DG, Ishizuka N, Claiborne B: Neurons, numbers and the hippocampal network. Prog Brain Res. 1990, 83: 1-11. full_text.
Article
CAS
PubMed
Google Scholar
Hanson JE, Blank M, Valenzuela RA, Garner CC, Madison DV: The functional nature of synaptic circuitry is altered in area CA3 of the hippocampus in a mouse model of Down's syndrome. J Physiol. 2007, 579: 53-67. 10.1113/jphysiol.2006.114868.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hanson JE, Madison DV: Presynaptic FMR1 genotype influences the degree of synaptic connectivity in a mosaic mouse model of fragile × syndrome. J Neurosci. 2007, 27: 4014-4018. 10.1523/JNEUROSCI.4717-06.2007.
Article
CAS
PubMed
Google Scholar
Knafo S, Alonso-Nanclares L, Gonzalez-Soriano J, Merino-Serrais P, Fernaud-Espinosa I, Ferrer I, Defelipe J: Widespread Changes in Dendritic Spines in a Model of Alzheimer's Disease. Cereb Cortex. 2008
Google Scholar
Ivanco TL, Greenough WT: Altered mossy fiber distributions in adult Fmr1 (FVB) knockout mice. Hippocampus. 2002, 12: 47-54. 10.1002/hipo.10004.
Article
PubMed
Google Scholar
Mineur YS, Sluyter F, de Wit S, Oostra BA, Crusio WE: Behavioral and neuroanatomical characterization of the Fmr1 knockout mouse. Hippocampus. 2002, 12: 39-46. 10.1002/hipo.10005.
Article
PubMed
Google Scholar
Alpar A, Ueberham U, Seeger G, Arendt T, Gartner U: Effects of wild-type and mutant human amyloid precursor protein on cortical afferent network. Neuroreport. 2007, 18: 1247-1250. 10.1097/WNR.0b013e3282202829.
Article
PubMed
Google Scholar
Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, Yoo J, Ho KO, Yu GQ, Kreitzer A, et al.: Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron. 2007, 55: 697-711. 10.1016/j.neuron.2007.07.025.
Article
CAS
PubMed
Google Scholar
Hasselmo ME, Schnell E, Barkai E: Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. J Neurosci. 1995, 15: 5249-5262.
CAS
PubMed
Google Scholar
Yoshiike Y, Kimura T, Yamashita S, Furudate H, Mizoroki T, Murayama M, Takashima A: GABA(A) receptor-mediated acceleration of aging-associated memory decline in APP/PS1 mice and its pharmacological treatment by picrotoxin. PLoS ONE. 2008, 3: e3029-10.1371/journal.pone.0003029.
Article
PubMed Central
PubMed
Google Scholar
Rueda N, Florez J, Martinez-Cue C: Chronic pentylenetetrazole but not donepezil treatment rescues spatial cognition in Ts65Dn mice, a model for Down syndrome. Neurosci Lett. 2008, 433: 22-27. 10.1016/j.neulet.2007.12.039.
Article
CAS
PubMed
Google Scholar
Fernandez F, Morishita W, Zuniga E, Nguyen J, Blank M, Malenka RC, Garner CC: Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat Neurosci. 2007, 10: 411-413.
CAS
PubMed
Google Scholar
Akbarian S: Restoring GABAergic signaling and neuronal synchrony in schizophrenia. Am J Psychiatry. 2008, 165: 1507-1509. 10.1176/appi.ajp.2008.08081225.
Article
PubMed
Google Scholar
Lewis DA, Cho RY, Carter CS, Eklund K, Forster S, Kelly MA, Montrose D: Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. Am J Psychiatry. 2008, 165: 1585-1593. 10.1176/appi.ajp.2008.08030395.
Article
PubMed Central
PubMed
Google Scholar
Hayashi ML, Rao BS, Seo JS, Choi HS, Dolan BM, Choi SY, Chattarji S, Tonegawa S: Inhibition of p21-activated kinase rescues symptoms of fragile × syndrome in mice. Proc Natl Acad Sci USA. 2007, 104: 11489-11494. 10.1073/pnas.0705003104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lynch G, Kramar EA, Rex CS, Jia Y, Chappas D, Gall CM, Simmons DA: Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington's disease. J Neurosci. 2007, 27: 4424-4434. 10.1523/JNEUROSCI.5113-06.2007.
Article
CAS
PubMed
Google Scholar
Simmons DA, Rex CS, Palmer L, Pandyarajan V, Fedulov V, Gall CM, Lynch G: Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington's disease knockin mice. Proc Natl Acad Sci USA. 2009, 106: 4906-4911. 10.1073/pnas.0811228106.
Article
PubMed Central
CAS
PubMed
Google Scholar
van Woerden GM, Harris KD, Hojjati MR, Gustin RM, Qiu S, de Avila Freire R, Jiang YH, Elgersma Y, Weeber EJ: Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat Neurosci. 2007, 10: 280-282. 10.1038/nn1845.
Article
CAS
PubMed
Google Scholar
McTighe SM, Mar AC, Romberg C, Bussey TJ, Saksida LM: A new touchscreen test of pattern separation: effect of hippocampal lesions. Neuroreport. 2009, 20: 881-885. 10.1097/WNR.0b013e32832c5eb2.
Article
PubMed
Google Scholar
Kirwan CB, Stark CE: Overcoming interference: an fMRI investigation of pattern separation in the medial temporal lobe. Learn Mem. 2007, 14: 625-633. 10.1101/lm.663507.
Article
PubMed Central
PubMed
Google Scholar
Toner CK, Pirogovsky E, Kirwan CB, Gilbert PE: Visual object pattern separation deficits in nondemented older adults. Learn Mem. 2009, 16: 338-342. 10.1101/lm.1315109.
Article
PubMed
Google Scholar
Gleeson P, Steuber V, Silver RA: neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron. 2007, 54: 219-235. 10.1016/j.neuron.2007.03.025.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hines ML, Carnevale NT: The NEURON simulation environment. Neural Comput. 1997, 9: 1179-1209. 10.1162/neco.1997.9.6.1179.
Article
CAS
PubMed
Google Scholar
Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, Sweatt JD, Beaud , et al.: Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron. 1998, 21: 799-811. 10.1016/S0896-6273(00)80596-6.
Article
CAS
PubMed
Google Scholar
Dindot SV, Antalffy BA, Bhattacharjee MB, Beaud , et al.: The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet. 2008, 17: 111-118. 10.1093/hmg/ddm288.
Article
CAS
PubMed
Google Scholar
Costa AC, Grybko MJ: Deficits in hippocampal CA1 LTP induced by TBS but not HFS in the Ts65Dn mouse: a model of Down syndrome. Neurosci Lett. 2005, 382: 317-322. 10.1016/j.neulet.2005.03.031.
Article
CAS
PubMed
Google Scholar
Kleschevnikov AM, Belichenko PV, Villar AJ, Epstein CJ, Malenka RC, Mobley WC: Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. J Neurosci. 2004, 24: 8153-8160. 10.1523/JNEUROSCI.1766-04.2004.
Article
CAS
PubMed
Google Scholar
Siarey RJ, Stoll J, Rapoport SI, Galdzicki Z: Altered long-term potentiation in the young and old Ts65Dn mouse, a model for Down Syndrome. Neuropharmacology. 1997, 36: 1549-1554. 10.1016/S0028-3908(97)00157-3.
Article
CAS
PubMed
Google Scholar
Siarey RJ, Carlson EJ, Epstein CJ, Balbo A, Rapoport SI, Galdzicki Z: Increased synaptic depression in the Ts65Dn mouse, a model for mental retardation in Down syndrome. Neuropharmacology. 1999, 38: 1917-1920. 10.1016/S0028-3908(99)00083-0.
Article
CAS
PubMed
Google Scholar
Belichenko PV, Masliah E, Kleschevnikov AM, Villar AJ, Epstein CJ, Salehi A, Mobley WC: Synaptic structural abnormalities in the Ts65Dn mouse model of Down Syndrome. J Comp Neurol. 2004, 480: 281-298. 10.1002/cne.20337.
Article
PubMed
Google Scholar
Kurt MA, Kafa MI, Dierssen M, Davies DC: Deficits of neuronal density in CA1 and synaptic density in the dentate gyrus, CA3 and CA1, in a mouse model of Down syndrome. Brain Res. 2004, 1022: 101-109. 10.1016/j.brainres.2004.06.075.
Article
PubMed
Google Scholar
Hu H, Qin Y, Bochorishvili G, Zhu Y, van Aelst L, Zhu JJ: Ras signaling mechanisms underlying impaired GluR1-dependent plasticity associated with fragile × syndrome. J Neurosci. 2008, 28: 7847-7862. 10.1523/JNEUROSCI.1496-08.2008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lauterborn JC, Rex CS, Kramar E, Chen LY, Pandyarajan V, Lynch G, Gall CM: Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile × syndrome. J Neurosci. 2007, 27: 10685-10694. 10.1523/JNEUROSCI.2624-07.2007.
Article
CAS
PubMed
Google Scholar
Pilpel Y, Kolleker A, Berberich S, Ginger M, Frick A, Mientjes E, Oostra BA, Seeburg PH: Synaptic ionotropic glutamate receptors and plasticity are developmentally altered in the CA1 field of Fmr1 knockout mice. J Physiol. 2009, 587: 787-804. 10.1113/jphysiol.2008.160929.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huber KM, Gallagher SM, Warren ST, Bear MF: Altered synaptic plasticity in a mouse model of fragile × mental retardation. Proc Natl Acad Sci USA. 2002, 99: 7746-7750. 10.1073/pnas.122205699.
Article
PubMed Central
CAS
PubMed
Google Scholar
Curia G, Papouin T, Seguela P, Avoli M: Downregulation of Tonic GABAergic Inhibition in a Mouse Model of Fragile × Syndrome. Cereb Cortex. 2008
Google Scholar
D'Antuono M, Merlo D, Avoli M: Involvement of cholinergic and gabaergic systems in the fragile × knockout mice. Neuroscience. 2003, 119: 9-13. 10.1016/S0306-4522(03)00103-9.
Article
PubMed
Google Scholar
El Idrissi A, Ding XH, Scalia J, Trenkner E, Brown WT, Dobkin C: Decreased GABA(A) receptor expression in the seizure-prone fragile × mouse. Neurosci Lett. 2005, 377: 141-146. 10.1016/j.neulet.2004.11.087.
Article
CAS
PubMed
Google Scholar
Gu Y, McIlwain KL, Weeber EJ, Yamagata T, Xu B, Antalffy BA, Reyes C, Yuva-Paylor L, Armstrong D, Zoghbi H, et al.: Impaired conditioned fear and enhanced long-term potentiation in Fmr2 knock-out mice. J Neurosci. 2002, 22: 2753-2763.
CAS
PubMed
Google Scholar
Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y, Gutmann DH, Parada LF, Mody I, Silva AJ: Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell. 2008, 135: 549-560. 10.1016/j.cell.2008.09.060.
Article
PubMed Central
CAS
PubMed
Google Scholar
Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, Kucherlapati R, Jacks T, Silva AJ: Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature. 2002, 415: 526-530. 10.1038/nature711.
Article
CAS
PubMed
Google Scholar
Guilding C, McNair K, Stone TW, Morris BJ: Restored plasticity in a mouse model of neurofibromatosis type 1 via inhibition of hyperactive ERK and CREB. Eur J Neurosci. 2007, 25: 99-105. 10.1111/j.1460-9568.2006.05238.x.
Article
PubMed
Google Scholar
Asaka Y, Jugloff DG, Zhang L, Eubanks JH, Fitzsimonds RM: Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Neurobiol Dis. 2006, 21: 217-227. 10.1016/j.nbd.2005.07.005.
Article
CAS
PubMed
Google Scholar
Moretti P, Levenson JM, Battaglia F, Atkinson R, Teague R, Antalffy B, Armstrong D, Arancio O, Sweatt JD, Zoghbi HY: Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci. 2006, 26: 319-327. 10.1523/JNEUROSCI.2623-05.2006.
Article
CAS
PubMed
Google Scholar
Dani VS, Chang Q, Maffei A, Turrigiano GG, Jaenisch R, Nelson SB: Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci USA. 2005, 102: 12560-12565. 10.1073/pnas.0506071102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Belichenko PV, Wright EE, Belichenko NP, Masliah E, Li HH, Mobley WC, Francke U: Widespread changes in dendritic and axonal morphology in Mecp2-mutant mouse models of Rett syndrome: evidence for disruption of neuronal networks. J Comp Neurol. 2009, 514: 240-258. 10.1002/cne.22009.
Article
CAS
PubMed
Google Scholar
Smrt RD, Eaves-Egenes J, Barkho BZ, Santistevan NJ, Zhao C, Aimone JB, Gage FH, Zhao X: Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiol Dis. 2007, 27: 77-89. 10.1016/j.nbd.2007.04.005.
Article
PubMed Central
CAS
PubMed
Google Scholar
von der Brelie C, Waltereit R, Zhang L, Beck H, Kirschstein T: Impaired synaptic plasticity in a rat model of tuberous sclerosis. Eur J Neurosci. 2006, 23: 686-692. 10.1111/j.1460-9568.2006.04594.x.
Article
PubMed
Google Scholar
Meikle L, Pollizzi K, Egnor A, Kramvis I, Lane H, Sahin M, Kwiatkowski DJ: Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci. 2008, 28: 5422-5432. 10.1523/JNEUROSCI.0955-08.2008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tavazoie SF, Alvarez VA, Ridenour DA, Kwiatkowski DJ, Sabatini BL: Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat Neurosci. 2005, 8: 1727-1734. 10.1038/nn1566.
Article
CAS
PubMed
Google Scholar
Meng J, Meng Y, Hanna A, Janus C, Jia Z: Abnormal long-lasting synaptic plasticity and cognition in mice lacking the mental retardation gene Pak3. J Neurosci. 2005, 25: 6641-6650. 10.1523/JNEUROSCI.0028-05.2005.
Article
CAS
PubMed
Google Scholar
D'Adamo P, Welzl H, Papadimitriou S, Raffaele di Barletta M, Tiveron C, Tatangelo L, Pozzi L, Chapman PF, Knevett SG, Ramsay MF, et al.: Deletion of the mental retardation gene Gdi1 impairs associative memory and alters social behavior in mice. Hum Mol Genet. 2002, 11: 2567-2580. 10.1093/hmg/11.21.2567.
Article
PubMed
Google Scholar
Khelfaoui M, Alice P, Powell AD, Valnegri P, Cheong KW, Blandin Y, Passafaro M, Jefferys JG, Chelly J, Billuart P: Inhibition of RhoA pathway rescues the endocytosis defects in Oligophrenin1 mouse model of mental retardation. Hum Mol Genet. 2009
Google Scholar
Kvajo M, McKellar H, Arguello PA, Drew LJ, Moore H, MacDermott AB, Karayiorgou M, Gogos JA: A mutation in mouse Disc1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc Natl Acad Sci USA. 2008, 105: 7076-7081. 10.1073/pnas.0802615105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Weeber EJ, Beffert U, Jones C, Christian JM, Forster E, Sweatt JD, Herz J: Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem. 2002, 277: 39944-39952. 10.1074/jbc.M205147200.
Article
CAS
PubMed
Google Scholar
Qiu S, Korwek KM, Pratt-Davis AR, Peters M, Bergman MY, Weeber EJ: Cognitive disruption and altered hippocampus synaptic function in Reelin haploinsufficient mice. Neurobiol Learn Mem. 2006, 85: 228-242. 10.1016/j.nlm.2005.11.001.
Article
CAS
PubMed
Google Scholar
Liu WS, Pesold C, Rodriguez MA, Carboni G, Auta J, Lacor P, Larson J, Condie BG, Guidotti A, Costa E: Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse. Proc Natl Acad Sci USA. 2001, 98: 3477-3482. 10.1073/pnas.051614698.
Article
PubMed Central
CAS
PubMed
Google Scholar
Niu S, Yabut O, D'Arcangelo G: The Reelin signaling pathway promotes dendritic spine development in hippocampal neurons. J Neurosci. 2008, 28: 10339-10348. 10.1523/JNEUROSCI.1917-08.2008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mukai J, Dhilla A, Drew LJ, Stark KL, Cao L, MacDermott AB, Karayiorgou M, Gogos JA: Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci. 2008, 11: 1302-1310. 10.1038/nn.2204.
Article
PubMed Central
CAS
PubMed
Google Scholar
Spalloni A, Geracitano R, Berretta N, Sgobio C, Bernardi G, Mercuri NB, Longone P, Ammassari-Teule M: Molecular and synaptic changes in the hippocampus underlying superior spatial abilities in pre-symptomatic G93A+/+ mice overexpressing the human Cu/Zn superoxide dismutase (Gly93 --> ALA) mutation. Exp Neurol. 2006, 197: 505-514. 10.1016/j.expneurol.2005.10.014.
Article
CAS
PubMed
Google Scholar
Sgobio C, Trabalza A, Spalloni A, Zona C, Carunchio I, Longone P, Ammassari-Teule M: Abnormal medial prefrontal cortex connectivity and defective fear extinction in the presymptomatic G93A SOD1 mouse model of ALS. Genes Brain Behav. 2008, 7: 427-434. 10.1111/j.1601-183X.2007.00367.x.
Article
CAS
PubMed
Google Scholar
Jacobsen JS, Wu CC, Redwine JM, Comery TA, Arias R, Bowlby M, Martone R, Morrison JH, Pangalos MN, Reinhart PH, Bloom FE: Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103: 5161-5166. 10.1073/pnas.0600948103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Saura CA, Choi SY, Beglopoulos V, Malkani S, Zhang D, Shankaranarayana Rao BS, Chattarji S, Kelleher RJ, Kandel ER, Duff K, et al.: Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron. 2004, 42: 23-36. 10.1016/S0896-6273(04)00182-5.
Article
CAS
PubMed
Google Scholar
Trinchese F, Liu S, Battaglia F, Walter S, Mathews PM, Arancio O: Progressive age-related development of Alzheimer-like pathology in APP/PS1 mice. Ann Neurol. 2004, 55: 801-814. 10.1002/ana.20101.
Article
CAS
PubMed
Google Scholar
Lanz TA, Carter DB, Merchant KM: Dendritic spine loss in the hippocampus of young PDAPP and Tg2576 mice and its prevention by the ApoE2 genotype. Neurobiol Dis. 2003, 13: 246-253. 10.1016/S0969-9961(03)00079-2.
Article
CAS
PubMed
Google Scholar
Moolman DL, Vitolo OV, Vonsattel JP, Shelanski ML: Dendrite and dendritic spine alterations in Alzheimer models. J Neurocytol. 2004, 33: 377-387. 10.1023/B:NEUR.0000044197.83514.64.
Article
CAS
PubMed
Google Scholar
Tsai J, Grutzendler J, Duff K, Gan WB: Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci. 2004, 7: 1181-1183. 10.1038/nn1335.
Article
CAS
PubMed
Google Scholar
Murphy KP, Carter RJ, Lione LA, Mangiarini L, Mahal A, Bates GP, Dunnett SB, Morton AJ: Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington's disease mutation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2000, 20: 5115-5123.
CAS
Google Scholar
Usdin MT, Shelbourne PF, Myers RM, Madison DV: Impaired synaptic plasticity in mice carrying the Huntington's disease mutation. Hum Mol Genet. 1999, 8: 839-846. 10.1093/hmg/8.5.839.
Article
CAS
PubMed
Google Scholar
Cummings DM, Milnerwood AJ, Dallerac GM, Waights V, Brown JY, Vatsavayai SC, Hirst MC, Murphy KP: Aberrant cortical synaptic plasticity and dopaminergic dysfunction in a mouse model of Huntington's disease. Hum Mol Genet. 2006, 15: 2856-2868. 10.1093/hmg/ddl224.
Article
CAS
PubMed
Google Scholar
Milnerwood AJ, Cummings DM, Dallerac GM, Brown JY, Vatsavayai SC, Hirst MC, Rezaie P, Murphy KP: Early development of aberrant synaptic plasticity in a mouse model of Huntington's disease. Hum Mol Genet. 2006, 15: 1690-1703. 10.1093/hmg/ddl092.
Article
CAS
PubMed
Google Scholar
Wang Y, Chandran JS, Cai H, Mattson MP: DJ-1 is essential for long-term depression at hippocampal CA1 synapses. Neuromolecular Med. 2008, 10: 40-45. 10.1007/s12017-008-8023-4.
Article
CAS
PubMed
Google Scholar
Hanson JE, Orr AL, Madison DV: Altered Hippocampal Synaptic Physiology in Aged Parkin-Deficient Mice. Neuromolecular Med. 2010
Google Scholar
Wozniak DF, Xiao M, Xu L, Yamada KA, Ornitz DM: Impaired spatial learning and defective theta burst induced LTP in mice lacking fibroblast growth factor 14. Neurobiol Dis. 2007, 26: 14-26. 10.1016/j.nbd.2006.11.014.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xiao M, Xu L, Laezza F, Yamada K, Feng S, Ornitz DM: Impaired hippocampal synaptic transmission and plasticity in mice lacking fibroblast growth factor 14. Mol Cell Neurosci. 2007, 34: 366-377. 10.1016/j.mcn.2006.11.020.
Article
CAS
PubMed
Google Scholar
Watase K, Gatchel JR, Sun Y, Emamian E, Atkinson R, Richman R, Mizusawa H, Orr HT, Shaw C, Zoghbi HY: Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model. PLoS Med. 2007, 4: e182-10.1371/journal.pmed.0040182.
Article
PubMed Central
PubMed
Google Scholar