Primo-Parmo SL, Sorenson RC, Teiber J, La Du B, N. The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. Genomics. 1996;33(3):498–507. https://doi.org/10.1006/geno.1996.0225.
Article
CAS
PubMed
Google Scholar
Draganov DI, Teiber JF, Speelman A, Osawa Y, Sunahara R, La Du BN. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res. 2005;46(6):1239–47. https://doi.org/10.1194/jlr.M400511-JLR200.
Article
CAS
PubMed
Google Scholar
Ng CJ, Wadleigh DJ, Gangopadhyay A, Hama S, Grijalva VR, Navab M, Fogelman AM, Reddy ST. Paraoxonase-2 is a ubiquitously expressed protein with antioxidant properties and is capable of preventing cell-mediated oxidative modification of low density lipoprotein. J Biol Chem. 2001;276(48):44444–9. https://doi.org/10.1074/jbc.M105660200.
Article
CAS
PubMed
Google Scholar
Marsillach J, Mackness B, Mackness M, Riu F, Beltrán R, Joven J, Camps J. Immunohistochemical analysis of paraoxonases-1, 2, and 3 expression in normal mouse tissues. Free Radic Biol Med. 2008;45(2):146–57. https://doi.org/10.1016/j.freeradbiomed.2008.03.023.
Article
CAS
PubMed
Google Scholar
Devarajan A, Bourquard N, Hama S, Navab M, Grijalva VR, Morvardi S, Clarke CF, Vergnes L, Reue K, Teiber JF, Reddy ST. Paraoxonase 2 deficiency alters mitochondrial function and exacerbates the development of atherosclerosis. Antioxid Redox Signal. 2011;14(3):341–51. https://doi.org/10.1089/ars.2010.3430.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giordano G, Cole TB, Furlong CE, Costa LG. Paraoxonase 2 (PON2) in the mouse central nervous system: a neuroprotective role? Toxicol Appl Pharmacol. 2011;256(3):369–78. https://doi.org/10.1016/j.taap.2011.02.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giordano G, Tait L, Furlong CE, Cole TB, Kavanagh TJ, Costa LG. Gender differences in brain susceptibility to oxidative stress are mediated by levels of paraoxonase-2 expression. Free Radic Biol Med. 2013;58:98–108. https://doi.org/10.1016/j.freeradbiomed.2013.01.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jamwal S, Blackburn JK, Elsworth JD. Sex-based disparity in paraoxonase-2 expression in the brains of African green monkeys. Free Radic Biol Med. 2021;167:201–4. https://doi.org/10.1016/j.freeradbiomed.2021.03.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garrick JM, Cole TB, Bammler TK, MacDonald JW, Marsillach J, Furlong CE, Costa LG. Paraoxonase 2 deficiency in mice alters motor behavior and causes region-specific transcript changes in the brain. Neurotoxicol Teratol. 2021;87: 107010. https://doi.org/10.1016/j.ntt.2021.107010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ng CJ, Bourquard N, Grijalva V, Hama S, Shih DM, Navab M, Fogelman AM, Lusis AJ, Young S, Reddy ST. Paraoxonase-2 deficiency aggravates atherosclerosis in mice despite lower apolipoprotein-B-containing lipoproteins: anti-atherogenic role for paraoxonase-2. J Biol Chem. 2006;281(40):29491–500. https://doi.org/10.1074/jbc.M605379200.
Article
CAS
PubMed
Google Scholar
Li W, Kennedy D, Shao Z, Wang X, Kamdar AK, Weber M, Mislick K, Kiefer K, Morales R, Agatisa-Boyle B, Shih DM, Reddy ST, Moravec CS, Tang WHW. Paraoxonase 2 prevents the development of heart failure. Free Radic Biol Med. 2018;121:117–26. https://doi.org/10.1016/j.freeradbiomed.2018.04.583.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bourquard N, Ng CJ, Reddy ST. Impaired hepatic insulin signalling in PON2 deficient mice: a novel role for the PON2/apoE axis on the macrophage inflammatory response. Biochem J. 2011;436(1):91–100. https://doi.org/10.1042/BJ20101891.
Article
CAS
PubMed
Google Scholar
Qujeq D, Mahrooz A, Alizadeh A, Boorank R. Paraoxonase-2 variants potentially influence insulin resistance, beta-cell function, and their interrelationships with alanine aminotransferase in type 2 diabetes. J Res Med Sci. 2018;23:107. https://doi.org/10.4103/jrms.JRMS_88_18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shih DM, Meng Y, Sallam T, Vergnes L, Shu ML, Reue K, Tontonoz P, Fogelman AM, Lusis AJ, Reddy ST. PON2 deficiency leads to increased susceptibility to diet-induced obesity. Antioxidants (Basel, Switzerland). 2019. https://doi.org/10.3390/antiox8010019.
Article
Google Scholar
Nie Y, Luo D, Yang M, Wang Y, Xiong L, Gao L, Liu Y, Liu H. A meta-analysis on the relationship of the PON Genes and Alzheimer disease. J Geriatr Psychiatry Neurol. 2017;30(6):303–10. https://doi.org/10.1177/0891988717731825.
Article
PubMed
Google Scholar
Altenhöfer S, Witte I, Teiber JF, Wilgenbus P, Pautz A, Li H, Daiber A, Witan H, Clement AM, Förstermann U, Horke S. One enzyme, two functions: PON2 prevents mitochondrial superoxide formation and apoptosis independent from its lactonase activity. J Biol Chem. 2010;285(32):24398–403. https://doi.org/10.1074/jbc.M110.118604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal. 2013;11(1):34–34. https://doi.org/10.1186/1478-811X-11-34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Michaelis EK. Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci. 2010;2:12–12. https://doi.org/10.3389/fnagi.2010.00012.
Article
PubMed
PubMed Central
Google Scholar
Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson’s disease. Front Neuroanat. 2015;9:91. https://doi.org/10.3389/fnana.2015.00091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan Z, Ali SA. Oxidative stress-related biomarkers in Parkinson’s disease: a systematic review and meta-analysis. Iran J Neurol. 2018;17(3):137–44.
PubMed
PubMed Central
Google Scholar
Varçin M, Bentea E, Michotte Y, Sarre S. Oxidative stress in genetic mouse models of Parkinson’s disease. Oxid Med Cell Longev. 2012;2012:624925–624925. https://doi.org/10.1155/2012/624925.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parsanejad M, Bourquard N, Qu D, Zhang Y, Huang E, Rousseaux MWC, Aleyasin H, Irrcher I, Callaghan S, Vaillant DC, Kim RH, Slack RS, Mak TW, Reddy ST, Figeys D, Park DS. DJ-1 interacts with and regulates paraoxonase-2, an enzyme critical for neuronal survival in response to oxidative stress. PLoS ONE. 2014;9(9): e106601. https://doi.org/10.1371/journal.pone.0106601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harris RC, Zhang M-Z. Dopamine, the kidney, and hypertension. Curr Hypertens Rep. 2012;14(2):138–43. https://doi.org/10.1007/s11906-012-0253-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Zhang Y, Cuevas S, Villar VA, Escano C, Asico DL, Yu P, Grandy DK, Felder RA, Armando I, Jose PA. Paraoxonase 2 decreases renal reactive oxygen species production, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of NADPH oxidase. Free Radic Biol Med. 2012;53(3):437–46. https://doi.org/10.1016/j.freeradbiomed.2012.05.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang S, Yang Y, Yu P, Yang J, Jiang X, Villar VAM, Sibley DR, Jose PA, Zeng C. Dopamine D1 and D5 receptors differentially regulate oxidative stress through paraoxonase 2 in kidney cells. Free Radic Res. 2015;49(4):397–410. https://doi.org/10.3109/10715762.2015.1006215.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giordano G, White CC, McConnachie LA, Fernandez C, Kavanagh TJ, Costa LG. Neurotoxicity of domoic acid in cerebellar granule neurons in a genetic model of glutathione deficiency. Mol Pharmacol. 2006;70(6):2116. https://doi.org/10.1124/mol.106.027748.
Article
CAS
PubMed
Google Scholar
Frantz KJ, Van Hartesveldt C. Sulpiride antagonizes the biphasic locomotor effects of quinpirole in weanling rats. Psychopharmacology. 1995;119(3):299–304. https://doi.org/10.1007/BF02246295.
Article
CAS
PubMed
Google Scholar
Shi WX, Smith PL, Pun CL, Millet B, Bunney BS. D1–D2 interaction in feedback control of midbrain dopamine neurons. J Neurosci. 1997;17(20):7988–94. https://doi.org/10.1523/JNEUROSCI.17-20-07988.1997.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garrick JM, Dao K, de Laat R, Elsworth J, Cole TB, Marsillach J, Furlong CE, Costa LG. Developmental expression of paraoxonase 2. Chem Biol Interact. 2016;259(Pt B):168–74. https://doi.org/10.1016/j.cbi.2016.04.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Can Res. 2004;64(15):5245–50. https://doi.org/10.1158/0008-5472.CAN-04-0496.
Article
CAS
Google Scholar
Dasgupta S, Demirci FY, Dressen AS, Kao AH, Rhew EY, Ramsey-Goldman R, Manzi S, Kammerer CM, Kamboh MI. Association analysis of PON2 genetic variants with serum paraoxonase activity and systemic lupus erythematosus. BMC Med Genet. 2011;12:7. https://doi.org/10.1186/1471-2350-12-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wachtel SR, Abercrombie ED. L-3,4-dihydroxyphenylalanine-induced dopamine release in the striatum of intact and 6-hydroxydopamine-treated rats: differential effects of monoamine oxidase A and B inhibitors. J Neurochem. 1994;63(1):108–17. https://doi.org/10.1046/j.1471-4159.1994.63010108.x.
Article
CAS
PubMed
Google Scholar
Fornai F, Chen K, Giorgi FS, Gesi M, Alessandri MG, Shih JC. Striatal dopamine metabolism in monoamine oxidase B-deficient mice: a brain dialysis study. J Neurochem. 1999;73(6):2434–40. https://doi.org/10.1046/j.1471-4159.1999.0732434.x.
Article
CAS
PubMed
Google Scholar
Maier T, Güell M, Serrano L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 2009;583(24):3966–73. https://doi.org/10.1016/j.febslet.2009.10.036.
Article
CAS
PubMed
Google Scholar
Carlyle BC, Kitchen RR, Kanyo JE, Voss EZ, Pletikos M, Sousa A, Lam TT, Gerstein MB, Sestan N, Nairn AC. A multiregional proteomic survey of the postnatal human brain. Nat Neurosci. 2017;20(12):1787–95. https://doi.org/10.1038/s41593-017-0011-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holt CE, Schuman EM. The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron. 2013;80(3):648–57. https://doi.org/10.1016/j.neuron.2013.10.036.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crispino M, Chun JT, Cefaliello C, Perrone Capano C, Giuditta A. Local gene expression in nerve endings. Dev Neurobiol. 2014;74(3):279–91. https://doi.org/10.1002/dneu.22109.
Article
CAS
PubMed
Google Scholar
Gervasi NM, Scott SS, Aschrafi A, Gale J, Vohra SN, MacGibeny MA, Kar AN, Gioio AE, Kaplan BB. The local expression and trafficking of tyrosine hydroxylase mRNA in the axons of sympathetic neurons. RNA (New York, NY). 2016;22(6):883–95. https://doi.org/10.1261/rna.053272.115.
Article
CAS
Google Scholar
Xenias HS, Ibáñez-Sandoval O, Koós T, Tepper JM. Are striatal tyrosine hydroxylase interneurons dopaminergic? J Neurosci. 2015;35(16):6584–99. https://doi.org/10.1523/JNEUROSCI.0195-15.2015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marin O, Anderson SA, Rubenstein JL. Origin and molecular specification of striatal interneurons. J Neurosci. 2000;20(16):6063–76. https://doi.org/10.1523/JNEUROSCI.20-16-06063.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016;165(3):535–50. https://doi.org/10.1016/j.cell.2016.03.014.
Article
CAS
PubMed
Google Scholar
Hershey JWB, Sonenberg N, Mathews MB. Principles of translational control: an overview. Cold Spring Harb Perspect Biol. 2012;4(12): a011528. https://doi.org/10.1101/cshperspect.a011528.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cooper GM. Protein degradation. The cell: a molecular approach. 2nd edn. 2000. https://www.ncbi.nlm.nih.gov/books/NBK9957/
Anisimova AS, Alexandrov AI, Makarova NE, Gladyshev VN, Dmitriev SE. Protein synthesis and quality control in aging. Aging. 2018;10(12):4269–88. https://doi.org/10.18632/aging.101721.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kellendonk C, Simpson EH, Polan HJ, Malleret G, Vronskaya S, Winiger V, Moore H, Kandel ER. Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron. 2006;49(4):603–15. https://doi.org/10.1016/j.neuron.2006.01.023.
Article
CAS
PubMed
Google Scholar
Huang W-J, Zhang X, Chen W-W. Role of oxidative stress in Alzheimer’s disease. Biomed Rep. 2016;4(5):519–22. https://doi.org/10.3892/br.2016.630.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boyd KN, Mailman RB. Dopamine receptor signaling and current and future antipsychotic drugs. Handb Exp Pharmacol. 2012;212:53. https://doi.org/10.1007/978-3-642-25761-2_3.
Article
CAS
Google Scholar
Mishra A, Singh S, Shukla S. Physiological and functional basis of dopamine receptors and their role in neurogenesis: possible implication for Parkinson’s disease. J Exp Neurosci. 2018. https://doi.org/10.1177/1179069518779829.
Article
PubMed
PubMed Central
Google Scholar
Kelly MA, Rubinstein M, Phillips TJ, Lessov CN, Burkhart-Kasch S, Zhang G, Bunzow JR, Fang Y, Gerhardt GA, Grandy DK, Low MJ. Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J Neurosci. 1998;18(9):3470. https://doi.org/10.1523/JNEUROSCI.18-09-03470.1998.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ford CP. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience. 2014;282:13–22. https://doi.org/10.1016/j.neuroscience.2014.01.025.
Article
CAS
PubMed
Google Scholar
Hagmann H, Kuczkowski A, Ruehl M, Lamkemeyer T, Brodesser S, Horke S, Dryer S, Schermer B, Benzing T, Brinkkoetter PT. Breaking the chain at the membrane: paraoxonase 2 counteracts lipid peroxidation at the plasma membrane. FASEB J. 2014;28(4):1769–79. https://doi.org/10.1096/fj.13-240309.
Article
CAS
PubMed
Google Scholar
Shao W, Zhang S, Tang M, Zhang X, Zhou Z, Yin Y, Zhou Q, Huang Y, Liu Y, Wawrousek E, Chen T, Li S, Xu M, Zhou J, Hu G, Zhou J. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin. Nature. 2013;494(7435):90–4. https://doi.org/10.1038/nature11748.
Article
CAS
PubMed
Google Scholar
Ousman SS, Tomooka BH, van Noort JM, Wawrousek EF, O’Connor KC, Hafler DA, Sobel RA, Robinson WH, Steinman L. Protective and therapeutic role for alphaB-crystallin in autoimmune demyelination. Nature. 2007;448(7152):474–9. https://doi.org/10.1038/nature05935.
Article
CAS
PubMed
Google Scholar
du Sert NP, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020;18(7): e3000410. https://doi.org/10.1371/journal.pbio.3000410.
Article
CAS
Google Scholar