Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M. Speech recognition with primarily temporal cues. Science. 1995;270:303–4. https://doi.org/10.1126/SCIENCE.270.5234.303.
Article
CAS
PubMed
Google Scholar
Snell KB, Mapes FM, Hickman ED, Frisina DR. Word recognition in competing babble and the effects of age, temporal processing, and absolute sensitivity. J Acoust Soc Am. 2002;112:720–7. https://doi.org/10.1121/1.1487841.
Article
PubMed
Google Scholar
Giannela Samelli A, Schochat E. The gaps-in-noise test: gap detection thresholds in normal-hearing young adults. Int J Audiol. 2008;47:238–45. https://doi.org/10.1080/14992020801908244.
Article
PubMed
Google Scholar
Paulovicks J, Musiek FE. The gaps-in-noise (gin) test and its diagnostic significance. Hear J. 2008;61:67. https://doi.org/10.1097/01.HJ.0000314723.80439.72.
Article
Google Scholar
Moore BCJ. An introduction to the psychology of hearing: BRILL. The Netherlands. 2012 : 413. https://books.google.com/books/about/An_Introduction_to_the_Psychology_of_Hea.html?hl=ja&id=tkbOivKH2HkC. Accessed 26 Oct 2021.
Grose JH, Hall JW III, Buss E, Hatch D. Gap detection for similar and dissimilar gap markers. J Acoust Soc Am. 2001;109:1587. https://doi.org/10.1121/1.1354983.
Article
CAS
PubMed
Google Scholar
Heinrich A, Alain C, Schneider BA. Within- and between-channel gap detection in the human auditory cortex. NeuroReport. 2004;15:2051–6. https://doi.org/10.1097/00001756-200409150-00011.
Article
PubMed
Google Scholar
Plomp R. Rate of decay of auditory sensation. J Acoust Soc Am. 1964;36:277–82.
Article
Google Scholar
Dreschler WA, Plomp R. Relations between psychophysical data and speech perception for hearing-impaired subjects. II. Cit J Acoust Soc Am. 1985;78:1261. https://doi.org/10.1121/1.392895.
Article
CAS
Google Scholar
Tyler RS, Summerfield Q, Wood EJ, Fernandes MA. Psychoacoustic and phonetic temporal processing in normal and hearing-impaired listeners. J Acoust Soc Am. 1998;72:740. https://doi.org/10.1121/1.388254.
Article
Google Scholar
Helfer KS, Vargo M. Speech recognition and temporal processing in middle-aged women. J Am Acad Audiol. 2009;20:264–71. https://doi.org/10.3766/JAAA.20.4.6/BIB.
Article
PubMed
PubMed Central
Google Scholar
Nair PG, Basheer BM. Influence of temporal resolution skills in speech discrimination abilities of older subjects. Acta Otorhinolaryngol Ital. 2017;37:58. https://doi.org/10.14639/0392-100X-863.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacobson JT. Normative aspects of the pediatric auditory brainstem response. J Otolaryngol. 1985; 14 SUPPL. 14:7–11. https://europepmc.org/article/med/3864994. Accessed 15 Mar 2022.
Galambos R, Makeig S, Talmachoff PJ. A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci U S A. 1981;78:2643–7. https://doi.org/10.1073/pnas.78.4.2643.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eggermont JJ. Firing rate and firing synchrony distinguish dynamic from steady state sound. NeuroReport. 1997;8:2709–13. https://doi.org/10.1097/00001756-199708180-00014.
Article
CAS
PubMed
Google Scholar
Mäkelä JP, Hari R. Evidence for cortical origin of the 40 Hz auditory evoked response in man. Electroencephalogr Clin Neurophysiol. 1987;66:539–46.
Article
Google Scholar
Ison JR, O’Connor K, Bowen GP, Bocirnea A. Temporal resolution of gaps in noise by the rat is lost with functional decortication. Behav Neurosci. 1991;105:33–40. https://doi.org/10.1037/0735-7044.105.1.33.
Article
CAS
PubMed
Google Scholar
Bowen GP, Lin D, Taylor MK, Ison JR. Auditory cortex lesions in the rat impair both temporal acuity and noise increment thresholds, revealing a common neural substrate. Cereb Cortex. 2003;13:815–22. https://doi.org/10.1093/CERCOR/13.8.815.
Article
PubMed
Google Scholar
Pakarinen S, Takegata R, Rinne T, Huotilainen M, Näätänen R. Measurement of extensive auditory discrimination profiles using the mismatch negativity (MMN) of the auditory event-related potential (ERP). Clin Neurophysiol. 2007;118:177–85.
Article
Google Scholar
Palmer SB, Musiek FE. N1–P2 recordings to gaps in broadband noise. J Am Acad Audiol. 2013;24:37–45. https://doi.org/10.3766/jaaa.24.1.5.
Article
PubMed
Google Scholar
Bertoli S, Smurzynski J, Probst R. Temporal resolution in young and elderly subjects as measured by mismatch negativity and a psychoacoustic gap detection task. Clin Neurophysiol. 2002;113:396–406.
Article
Google Scholar
Levitt H. Transformed up-down methods in psychoacoustics. J Acoust Soc Am. 1971;49:467–77.
Article
Google Scholar
Zeng FG, Kong YY, Michalewski HJ, Starr A. Perceptual consequences of disrupted auditory nerve activity. J Neurophysiol. 2005;93:3050–63. https://doi.org/10.1152/JN.00985.2004/ASSET/IMAGES/LARGE/Z9K0050545510014.JPEG.
Article
PubMed
Google Scholar
Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.
Article
Google Scholar
Mauchly JW. Significance test for sphericity of a normal n-variate distribution. Ann Math Statist. 1940;11:204–9. https://doi.org/10.1214/AOMS/1177731915.
Article
Google Scholar
John MS, Picton TW. Human auditory steady-state responses to amplitude-modulated tones: phase and latency measurements. Hear Res. 2000;141:57–79.
Article
CAS
Google Scholar
Pratt H, Bleich N, Mittelman N. The composite N1 component to gaps in noise. Clin Neurophysiol. 2005;116:2648–63.
Article
Google Scholar
Michalewski HJ, Starr A, Nguyen TT, Kong YY, Zeng FG. Auditory temporal processes in normal-hearing individuals and in patients with auditory neuropathy. Clin Neurophysiol. 2005;116:669–80.
Article
Google Scholar
Müller N, Schlee W, Hartmann T, Lorenz I, Weisz N. Top-down modulation of the auditory steady-state response in a task-switch paradigm. Front Hum Neurosci. 2009. https://doi.org/10.3389/neuro.09.001.2009.
Article
PubMed
PubMed Central
Google Scholar
Meltzer B, Reichenbach CS, Braiman C, Schiff ND, Hudspeth AJ, Reichenbach T. The steady-state response of the cerebral cortex to the beat of music reflects both the comprehension of music and attention. Front Hum Neurosci. 2015. https://doi.org/10.3389/fnhum.2015.00436.
Article
PubMed
PubMed Central
Google Scholar
Dean Linden R, Picton TW, Hamel G, Campbell KB. Human auditory steady-state evoked potentials during selective attention. Electroencephalogr Clin Neurophysiol. 1987;66:145–59.
Article
Google Scholar
Skosnik PD, Krishnan GP, O’Donnell BF. The effect of selective attention on the gamma-band auditory steady-state response. Neurosci Lett. 2007;420:223–8.
Article
CAS
Google Scholar
Saupe K, Widmann A, Bendixen A, Müller MM, Schröger E. Effects of intermodal attention on the auditory steady-state response and the event-related potential. Psychophysiology. 2009;46:321–7. https://doi.org/10.1111/j.1469-8986.2008.00765.x.
Article
PubMed
Google Scholar
Deng S, Srinivasan R. Semantic and acoustic analysis of speech by functional networks with distinct time scales. Brain Res. 2010;1346:132–44.
Article
CAS
Google Scholar
Okamoto H, Stracke H, Bermudez P, Pantev C. Sound processing hierarchy within human auditory cortex. J Cogn Neurosci. 2011;23:1855–63. https://doi.org/10.1162/jocn.2010.21521.
Article
PubMed
Google Scholar
Foster SM, Kisley MA, Davis HP, Diede NT, Campbell AM, Davalos DB. Cognitive function predicts neural activity associated with pre-attentive temporal processing. Neuropsychologia. 2013;51:211–9.
Article
Google Scholar
Kisley MA, Davalos DB, Engleman LL, Guinther PM, Davis HP. Age-related change in neural processing of time-dependent stimulus features. Cogn Brain Res. 2005;25:913–25.
Article
Google Scholar
Anderer P, Semlitsch HV, Saletu B. Multichannel auditory event-related brain potentials: effects of normal aging on the scalp distribution of N1, P2, N2 and P300 latencies and amplitudes. Electroencephalogr Clin Neurophysiol. 1996;99:458–72.
Article
CAS
Google Scholar
Anderer P, Pascual-Marqui RD, Semlitsch HV, Saletu B. Differential effects of normal aging on sources of standard N1, target N1 and target P300 auditory event-related brain potentials revealed by low resolution electromagnetic tomography (LORETA). Electroencephalogr Clin Neurophysiol. 1998;108:160–74.
Article
CAS
Google Scholar
Grose JH, Mamo SK, Hall JW. Age effects in temporal envelope processing: speech unmasking and auditory steady state responses. Ear Hear. 2009;30:568–75. https://doi.org/10.1097/AUD.0b013e3181ac128f.
Article
PubMed
PubMed Central
Google Scholar
Boettcher FA, Poth EA, Mills JH, Dubno JR. The amplitude-modulation following response in young and aged human subjects. Hear Res. 2001;153:32–42.
Article
CAS
Google Scholar
Kelly JB, Rooney BJ, Phillips DP. Effects of bilateral auditory cortical lesions on gap-detection thresholds in the ferret (Mustela putorius). Behav Neurosci. 1996;110:542–50. https://doi.org/10.1037/0735-7044.110.3.542.
Article
CAS
PubMed
Google Scholar
Threlkeld SW, Penley SC, Rosen GD, Fitch RH. Detection of silent gaps in white noise following cortical deactivation in rats. NeuroReport. 2008;19:893–8. https://doi.org/10.1097/WNR.0B013E3283013D7E.
Article
PubMed
PubMed Central
Google Scholar
Masini CV, Babb JA, Nyhuis TJ, Day HEW, Campeau S. Auditory cortex lesions do not disrupt habituation of HPA axis responses to repeated noise stress. Brain Res. 2012;1443:18. https://doi.org/10.1016/J.BRAINRES.2012.01.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mo L, Stapells DR. The effect of brief-tone stimulus duration on the brain stem auditory steady-state response. Ear Hear. 2008;29:121–33. https://doi.org/10.1097/AUD.0B013E31815D6343.
Article
PubMed
Google Scholar
Phillips DP, Comeau M, Andrus JN. Auditory temporal gap detection in children with and without auditory processing disorder. J Am Acad Audiol. 2010;21:404–8. https://doi.org/10.3766/jaaa.21.6.5.
Article
PubMed
Google Scholar
McArthur GM, Bishop DVM. Auditory perceptual processing in people with reading and oral language impairments: current issues and recommendations. Dyslexia. 2001;7:150–70. https://doi.org/10.1002/dys.200.
Article
CAS
PubMed
Google Scholar
Bhatara A, Babikian T, Laugeson E, Tachdjian R, Sininger YS. Impaired timing and frequency discrimination in high-functioning autism spectrum disorders. J Autism Dev Disord. 2013;43:2312–28. https://doi.org/10.1007/s10803-013-1778-y.
Article
PubMed
Google Scholar
Iliadou V, Bamiou DE, Sidiras C, Moschopoulos NP, Tsolaki M, Nimatoudis I, et al. The use of the gaps-in-noise test as an index of the enhanced left temporal cortical thinning associated with the transition between mild cognitive impairment and Alzheimer’s disease. J Am Acad Audiol. 2017;28:463–71. https://doi.org/10.3766/jaaa.16075.
Article
PubMed
Google Scholar