Chen J, Yamahachi H, Gilbert CD. Experience-dependent gene expression in adult visual cortex. Cereb Cortex. 2010;20:650–60. https://doi.org/10.1093/cercor/bhp131.
Article
PubMed
Google Scholar
Lou AR, Madsen KH, Julian HO, Toft PB, Kjaer TW, Paulson OB, et al. Postoperative increase in grey matter volume in visual cortex after unilateral cataract surgery. Acta Ophthalmol. 2013;91:58–65. https://doi.org/10.1111/j.1755-3768.2011.02304.x.
Article
CAS
PubMed
Google Scholar
Giulia D, Franco L, Mona HD, Armonda B, Olivor C. Recovering sight in adulthood leads to rapid neurofunctional reorganization of visual functions. J Vis. 2012;12:1279. https://doi.org/10.1167/12.9.1279.
Article
Google Scholar
Qian HY, Wang XC, Wang ZY, Wang ZM, Liu PN, Wang ZC. Changes in the vision-related resting-state network in pituitary adenoma patients after vision improvement. Chin Med J. 2015;128:1171–6. https://doi.org/10.4103/0366-6999.156106.
Article
PubMed
PubMed Central
Google Scholar
Klinge C, Eippert F, Roder B, Buchel C. Corticocortical connections mediate primary visual cortex responses to auditory stimulation in the blind. J Neurosci. 2010;30:12798–805. https://doi.org/10.1523/JNEUROSCI.2384-10.2010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beer AL, Plank T, Greenlee MW. Diffusion tensor imaging shows white matter tracts between human auditory and visual cortex. Exp Brain Res. 2011;213:299–308. https://doi.org/10.1007/s00221-011-2715-y.
Article
PubMed
Google Scholar
Kupers R, Ptito M. Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neurosci Biobehav Rev. 2014;41:36–52. https://doi.org/10.1016/j.neubiorev.2013.08.001.
Article
PubMed
Google Scholar
Watkins KE, Shakespeare TJ, O’Donoghue MC, Alexander I, Ragge N, Cowey A, Bridge H. Early auditory processing in area V5/MT+ of the congenitally blind brain. J Neurosci. 2013;33:18242–6. https://doi.org/10.1523/JNEUROSCI.2546-13.2013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heimler B, Weiszm N, Collignonm O. Revisiting the adaptive and maladaptive effects of crossmodal plasticity. Neuroscience. 2014;283:44–63. https://doi.org/10.1016/j.neuroscience.2014.08.003.
Article
CAS
PubMed
Google Scholar
Jiang F, Stecker GC, Boynton GM, Fine I. Early blindness results in developmental plasticity for auditory motion processing within auditory and occipital cortex. Front Hum Neurosci. 2016;10:324. https://doi.org/10.3389/fnhum.2016.00324.
Article
PubMed
PubMed Central
Google Scholar
Dormal G, Rezk M, Yakobov E, Lepore F, Collignon O. Auditory motion in the sighted and blind: early visual deprivation triggers a large-scale imbalance between auditory and “visual” brain regions. Neuroimage. 2016;134:630–44. https://doi.org/10.1016/j.neuroimage.2016.04.027.
Article
PubMed
Google Scholar
Roder B, Stock O, Bien S, Neville H, Rosler F. Speech processing activates visual cortex in congenitally blind humans. Eur J Neurosci. 2002;16:930–6. https://doi.org/10.1046/j.1460-9568.2002.02147.x.
Article
PubMed
Google Scholar
Bedny M, Pascual-Leone A, Dodell-Feder D, Fedorenko E, Saxe R. Language processing in the occipital cortex of congenitally blind adults. Proc Natl Acad Sci USA. 2011;108:4429–34. https://doi.org/10.1073/pnas.1014818108.
Article
PubMed
PubMed Central
Google Scholar
Campbell J, Sharma A. Cross-modal re-organization in adults with early stage hearing loss. PLoS ONE. 2014;9: e90594. https://doi.org/10.1371/journal.pone.0090594.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stropahl M, Plotz K, Schonfeld R, Lenarz T, Sandmann P, Yovel G, Debener S. Cross-modal reorganization in cochlear implant users: auditory cortex contributes to visual face processing. Neuroimage. 2015;121:159–70. https://doi.org/10.1016/j.neuroimage.2015.07.062.
Article
PubMed
Google Scholar
Anderson CA, Wiggins IM, Kitterick PT, Hartley DEH. Adaptive benefit of cross-modal plasticity following cochlear implantation in deaf adults. Proc Natl Acad Sci USA. 2017;114:10256–61. https://doi.org/10.1073/pnas.1704785114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu C, Liu Y, Li J, Zhou Y, Wang K, Tian L, Li K. Altered functional connectivity of primary visual cortex in early blindness. Hum Brain Mapp. 2008;29:533–43. https://doi.org/10.1002/hbm.20420.
Article
PubMed
Google Scholar
Liu L, Yu CS, Liang M, Li J, Tian L, Zhou Y, Jiang T. Whole brain functional connectivity in the early blind. Brain. 2007;130:2085–96. https://doi.org/10.1093/brain/awm121.
Article
PubMed
Google Scholar
Wen X, Liu Y, Yao L, Ding M. Top-down regulation of default mode activity in spatial visual attention. J Neurosci. 2013;33:6444–53. https://doi.org/10.1523/JNEUROSCI.4939-12.2013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mayhew SD, Ostwald D, Porcaro C, Bagshaw AP. Spontaneous EEG alpha oscillation interacts with positive and negative BOLD responses in the visual-auditory cortices and default-mode network. Neuroimage. 2013;76:362–72. https://doi.org/10.1016/j.neuroimage.2013.02.070.
Article
PubMed
Google Scholar
Qian H, Wang X, Wang Z, Wang Z, Liu P. Altered vision-related resting-state activity in pituitary adenoma patients with visual damage. PLoS ONE. 2016;11: e0160119. https://doi.org/10.1371/journal.pone.0160119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Xu BN, Meng X, Zhang J, Yu XG, Zhou DB. Dual-room 1.5-T intraoperative magnetic resonance imaging suite with a movable magnet: implementa-tion and preliminary experience. Neurosurg Rev. 2012;35:95–109. https://doi.org/10.1007/s10143-011-0336-3.
Article
CAS
PubMed
Google Scholar
Yan CG, Zang YF. DPARSF: A MATLAB Toolbox for “Pipeline” data analysis of resting-state fMRI. Front Syst Neurosci. 2010;4:13. https://doi.org/10.3389/fnsys.2010.00013.
Article
Google Scholar
Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund HJ, Zilles K. Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage. 2001;13:669–83. https://doi.org/10.1006/nimg.2000.0714.
Article
CAS
PubMed
Google Scholar
Binkofski F, Amunts K, Stephan KM, Posse S, Schormann T, Freund HJ, Seitz RJ. Broca’s region subserves imagery of motion: a combined cytoarchitectonic and fMRI study. Hum Brain Mapp. 2000;11:273–85. https://doi.org/10.1002/1097-0193(200012)11:4%3c273::AID-HBM40%3e3.0.CO;2-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT. Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci. 2009;29:14496–505. https://doi.org/10.1523/JNEUROSCI.4004-09.2009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Greicius MD. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56. https://doi.org/10.1523/JNEUROSCI.5587-06.2007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8:700–11. https://doi.org/10.1038/nrn2201.
Article
CAS
PubMed
Google Scholar
Pillemer S, Holtzer R, Blumen HM. Functional connectivity associated with social networks in older adults: a resting-state fMRI study. Soc Neurosci. 2017;12:242–52. https://doi.org/10.1080/17470919.2016.1176599.
Article
PubMed
Google Scholar
Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab. 1993;13:5–14. https://doi.org/10.1038/jcbfm.1993.4.
Article
CAS
PubMed
Google Scholar
Shmuel A, Yacoub E, Chaimow D, Logothetis NK, Ugurbil K. Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla. Neuroimage. 2007;35:539–52. https://doi.org/10.1016/j.neuroimage.2006.12.030.
Article
PubMed
Google Scholar
Dubner R, Zeki SM. Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res. 1971;35:528–32. https://doi.org/10.1016/0006-8993(71)90494-x.
Article
CAS
PubMed
Google Scholar
Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Belliveau JW. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci. 1995;15:3215–30. https://doi.org/10.1523/JNEUROSCI.15-04-03215.1995.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Jong BM, Shipp S, Skidmore B, Frackowiak RS, Zeki S. The cerebral activity related to the visual perception of forward motion in depth. Brain. 1994;117:1039–54. https://doi.org/10.1016/j.brainres.2010.08.050.
Article
CAS
PubMed
Google Scholar
Zihl J, von Cramon D, Mai N. Selective disturbance of movement vision after bilateral brain damage. Brain. 1983;106:313–40. https://doi.org/10.1093/brain/106.2.313.
Article
PubMed
Google Scholar
Saenz M, Lewis LB, Huth AG, Fine I, Koch C. Visual motion area MT+/V5 responds to auditory motion in human sight-recovery subjects. J Neurosci. 2008;28:5141–8. https://doi.org/10.1523/JNEUROSCI.0803-08.2008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolbers T, Zahorik P, Giudice NA. Decoding the direction of auditory motion in blind humans. Neuroimage. 2010;56:681–7. https://doi.org/10.1016/j.neuroimage.2010.04.266.
Article
PubMed
Google Scholar
Ricciardi E, Vanello N, Sani L, Gentili C, Scilingo EP, Landini L, Pietrini P. The effect of visual experience on the development of functional architecture in hMT+. Cereb Cortex. 2007;17:2933–9. https://doi.org/10.1093/cercor/bhm018.
Article
PubMed
Google Scholar
Strelnikov K, Rouger J, Demonet JF, Lagleyre S, Fraysse B, Deguine O, Barone P. Visual activity predicts auditory recover from deafness after adult cochlear implantation. Brain. 2013;136:3682–95. https://doi.org/10.1093/brain/awt274.
Article
PubMed
Google Scholar
Alink A, Singer W, Muckli L. Capture of auditory motion by vision is represented by an activation shift from auditory to visual motion cortex. J Neurosci. 2008;28:2690–7. https://doi.org/10.1523/JNEUROSCI.2980-07.2008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burton H, Snyder AZ, Conturo TE, Akbudak E, Ollinger JM, Raichle ME. Adaptive changes in early and late blind: a fMRI study of braille reading. J Neurophysiol. 2002;87:589–607. https://doi.org/10.1152/jn.00129.2002.
Article
CAS
PubMed
Google Scholar
Deen B, Saxe R, Bedny M. Occipital cortex of blind individuals is functionally coupled with executive control areas of frontal cortex. J Cogn Neurosci. 2015;27:1633–47. https://doi.org/10.1162/jocn_a_00807.
Article
PubMed
Google Scholar
Bedny M, Konkle T, Pelphrey KA, Saxe R, Pascual-Leone A. Sensitive period for a multimodal response in human visual motion area MT/MST. Curr Biol. 2010;20:1900–6. https://doi.org/10.1016/j.cub.2010.09.044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cappe C, Rouiller EM, Barone P. Multisensory anatomical pathways. Hear Res. 2009;258:28–36. https://doi.org/10.1016/j.heares.2009.04.017.
Article
CAS
PubMed
Google Scholar
Brown LL, Schneider JS, Lidsky TI. Sensory and cognitive functions of the basal ganglia. Curr Opin Neurobiol. 1997;7:157–63. https://doi.org/10.1016/s0959-4388(97)80003-7.
Article
CAS
PubMed
Google Scholar
Berthier M, Starkstein S, Leiguarda R. Behavioral effects of damage to the right insula and surrounding regions. Cortex. 1987;23:673–8. https://doi.org/10.1016/s0010-9452(87)80057-6.
Article
CAS
PubMed
Google Scholar
Chen T, Michels L, Supekar K, Kochalka J, Ryali S, Menon V. Role of the anterior insular cortex in integrative causal signaling during multisensory auditory-visual attention. Eur J Neurosci. 2015;41:264–74. https://doi.org/10.1111/ejn.12764.
Article
PubMed
Google Scholar
Frank SM, Baumann O, Mattingley JB, Greenlee MW. Vestibular and visual responses in human posterior insular cortex. J Neurophysiol. 2014;112:2481–91. https://doi.org/10.1152/jn.00078.2014.
Article
PubMed
Google Scholar
Tyll S, Budinger E, Noesselt T. Thalamic influences on multisensory integration. Commun Integr Biol. 2011;4:378–81. https://doi.org/10.4161/cib.4.4.15222.
Article
PubMed
PubMed Central
Google Scholar
Hyvärinen J, Carlson S, Hyvärinen L. Early visual deprivation alters modality of neuronal responses in area 19 of monkey cortex. Neurosci Lett. 1981;26:239–43. https://doi.org/10.1016/0304-3940(81)90139-7.
Article
PubMed
Google Scholar
Hyvärinen J, Hyvärinen L, Linnankoski I. Modification of parietal association cortex and functional blindness after binocular deprivation in young monkeys. Exp Brain Res. 1981;42:1–8. https://doi.org/10.1007/BF00235723.
Article
PubMed
Google Scholar
Carlson S, Pertovaara A, Tanila H. Late effects of early binocular visual deprivation on the function of Broadmann’s area 7 of monkeys (Macaca arctoides). Dev Brain Res. 1987;33:101–11. https://doi.org/10.1016/0165-3806(87)90180-5.
Article
Google Scholar
Wallace MT, Perrault TJ Jr, Hairston D, Stein BE. Visual experience is necessary for the development of multisensory integration. J Neurosci. 2004;24:9580–4. https://doi.org/10.1523/JNEUROSCI.2535-04.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carriere BR, Royal DW, Perrault TJ Jr, Morrison SP, Vaughan JW, Stein BE, Wallace MT. Visual deprivation alters the development of cortical multisensory integration. J Neuropsysiol. 2007;98:2858–67. https://doi.org/10.1152/jn.00587.2007.
Article
Google Scholar
Putzar L, Goerendt I, Lange K, Rösler F, Röder B. Early visual deprivation impairs multisensory interactions in humans. Nat Neurosci. 2007;10:1243–5. https://doi.org/10.1038/nn1978.
Article
CAS
PubMed
Google Scholar
Putzar L, Hötting K, Röder B. Early visual deprivation affects the development of face recognition and of audio-visual speech perception. Restor Neurol Neurosci. 2010;28:251–7. https://doi.org/10.3233/RNN-2010-0526.
Article
PubMed
Google Scholar
Putzar L, Gondan M, Röder B. Basic multisensory functions can be acquired after congenital visual pattern deprivation in humans. Dev Neuropsychol. 2012;37:697–711. https://doi.org/10.1080/87565641.2012.696756.
Article
PubMed
Google Scholar
Calvert GA, Campbell R, Brammer MJ. Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Curr Biol. 2000;10:649–57. https://doi.org/10.1016/s0960-9822(00)00513-3.
Article
CAS
PubMed
Google Scholar
Stevenson RA, James TW. Audiovisual integration in human superior temporal sulcus: inverse effectiveness and the neural processing of speech and object recognition. Neuroimage. 2009;44:1210–23. https://doi.org/10.1016/j.neuroimage.2008.09.034.
Article
PubMed
Google Scholar
Weissman DH, Roberts KC, Visscher KM, Woldorff MG. The neural bases of momentary lapses in attention. Nat Neurosci. 2006;9:971–8. https://doi.org/10.1038/nn1727.
Article
CAS
PubMed
Google Scholar
Huang S, Li Y, Zhang W, Zhang B, Liu X, Mo L, Chen Q. Multisensory competition is modulated by sensory pathway interactions with fronto-sensorimotor and default-mode network regions. J Neurosci. 2015;35:9064–77. https://doi.org/10.1523/JNEUROSCI.3760-14.2015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gusnard DA, Raichle ME, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci. 2001;2:685–94. https://doi.org/10.1038/35094500.
Article
CAS
PubMed
Google Scholar
Sherman LE, Rudie JD, Pfeifer JH, Masten CL, McNealy K, Dapretto M. Development of the default mode and central executive networks across early adolescence: a longitudinal study. Dev Cogn Neurosci. 2014;10:148–59. https://doi.org/10.1016/j.dcn.2014.08.002.
Article
PubMed
PubMed Central
Google Scholar
Blakemore S-J. The social brain in adolescence. Nat Rev Neurosci. 2008;9:267–77. https://doi.org/10.1038/nrn2353.
Article
CAS
PubMed
Google Scholar
Mounder J, Liu Y, Huang H, Ding M. Coupling between visual alpha oscillations and default mode activity. Neuroimage. 2013;68:112–8. https://doi.org/10.1016/j.neuroimage.2012.11.058.
Article
Google Scholar
Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21:700–12. https://doi.org/10.1523/JNEUROSCI.21-02-00700.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44. https://doi.org/10.1523/JNEUROSCI.23-23-08432.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayakawa Y, Nakajima T, Takagi M, Fukuhara N, Abe H. Human cerebellar activation in relation to saccadic eye movements: a functional magnetic resonance imaging study. Ophthalmologica. 2002;216:399–405. https://doi.org/10.1159/000067551.
Article
PubMed
Google Scholar
Nitta T, Akao T, Kurkin S, Fukushima K. Involvement of the cerebellar dorsal vermis in vergence eye movements in monkeys. Cereb Cortex. 2008;18:1042–57. https://doi.org/10.1093/cercor/bhm143.
Article
PubMed
Google Scholar
Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Rao SM, Cox RW. Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci. 1999;11:80–95. https://doi.org/10.1162/089892999563265.
Article
CAS
PubMed
Google Scholar
Shulman GL, Corbetta M, Fiez JA, Buckner RL, Miezin FM, Raichle ME, Petersen SE. Searching for activations that generalize over tasks. Hum Brain Mapp. 1997;5:317–22. https://doi.org/10.1002/(SICI)1097-0193(1997)5:4%3c317::AID-HBM19%3e3.0.CO;2-A.
Article
CAS
PubMed
Google Scholar
Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. 2005;102:9673–8. https://doi.org/10.1073/pnas.0504136102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Binder JR, Desai RH, Graves WW, Conant LL. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex. 2009;19:2767–96. https://doi.org/10.1093/cercor/bhp055.
Article
PubMed
PubMed Central
Google Scholar
Brownsett SL, Wise RJ. The contribution of the parietal lobes to speaking and writing. Cereb Cortex. 2009;20:517–23. https://doi.org/10.1093/cercor/bhp120.
Article
PubMed
PubMed Central
Google Scholar
Chambers CD, Payne JM, Stokes MG, Mattingley JB. Fast and slow parietal pathways mediate spatial attention. Nat Neurosci. 2004;7:217–8. https://doi.org/10.1038/nn1203.
Article
CAS
PubMed
Google Scholar
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA. 2001;98:676–82. https://doi.org/10.1073/pnas.98.2.676.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA. 2003;100:253–8. https://doi.org/10.1073/pnas.0135058100.
Article
CAS
PubMed
Google Scholar
Uddin LQ, Kelly AM, Biswal BB, Castellanos F, Milham MP. Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp. 2009;30:625–37. https://doi.org/10.1002/hbm.20531.
Article
PubMed
Google Scholar
Wu SS, Chan TT, Majid A, Caspers S, Eickhoff SB, Menon V. Functional heterogeneity of inferior parietal cortex during mathematical cognition assessed with cytoarchitectonic probability maps. Cereb Cortex. 2009;19:2930–45. https://doi.org/10.1093/cercor/bhp063.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen AC, Oathes DJ, Chang C, Bradley T, Zhou ZW, Williams LM, Etkin A. Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proc Natl Acad Sci USA. 2013;110:19944–9. https://doi.org/10.1073/pnas.1311772110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bauer CCC, Whitfield-Gabrieli S, Díaz JL, Pasaye EH, Barrios FA. From state-to-trait meditation: reconfiguration of central executive and default mode networks. eNeuro. 2019;6:ENEURO.0335-18.2019. https://doi.org/10.1523/ENEURO.0335-18.2019.
Article
PubMed
PubMed Central
Google Scholar
Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, Seidman LJ. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci USA. 2009;106:1279–84. https://doi.org/10.1073/pnas.0809141106.
Article
PubMed
PubMed Central
Google Scholar
Uddin LQ. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci. 2015;16:55–61. https://doi.org/10.1038/nrn3857.
Article
CAS
PubMed
Google Scholar
Ham T, Leff A, de Boissezon X, Joffe A, Sharp DJ. Cognitive control and the salience network: an investigation of error processing and effective connectivity. J Neurosci. 2013;33:7091–8. https://doi.org/10.1523/JNEUROSCI.4692-12.2013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214:655–67. https://doi.org/10.1007/s00429-010-0262-0.
Article
PubMed
PubMed Central
Google Scholar
Uddin LQ, Supekar K, Amin H, Rykhlevskaia E, Nguyen DA, Greicius MD, Menon V. Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb Cortex. 2010;20:2636–46. https://doi.org/10.1093/cercor/bhq011.
Article
PubMed
PubMed Central
Google Scholar
Yantis S. The neural basis of selective attention: cortical sources and targets of attentional modulation. Curr Dir Psychol Sci. 2008;17:86–90. https://doi.org/10.1111/j.1467-8721.2008.00554.x.
Article
PubMed
PubMed Central
Google Scholar
Rushworth MF. Intention, choice, and the medial frontal cortex. Ann NY Acad Sci. 2008;1124:181–207. https://doi.org/10.1196/annals.1440.014.
Article
PubMed
Google Scholar
Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA. 2004;101:4637–42. https://doi.org/10.1073/pnas.0308627101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chand GB, Dhamala M. Interactions among the brain default-mode, salience, and central-executive networks during perceptual decision-making of moving dots. Brain Connect. 2016;6:249–54. https://doi.org/10.1089/brain.2015.0379.
Article
PubMed
Google Scholar
Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA. 2008;105:12569–74. https://doi.org/10.1073/pnas.0800005105.
Article
PubMed
PubMed Central
Google Scholar
Hayden BY, Nair AC, McCoy AN, Platt ML. Posterior cingulate cortex mediates outcome-contingent allocation of behavior. Neuron. 2008;60:19–25. https://doi.org/10.1016/j.neuron.2008.09.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Utevsky AV, Smith DV, Huettel SA. Precuneus is a functional core of the default-mode network. J Neurosci. 2014;34:932–40. https://doi.org/10.1523/JNEUROSCI.4227-13.2014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fransson P, Marrelec G. The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. Neuroimage. 2008;42:1178–84. https://doi.org/10.1016/j.neuroimage.2008.05.059.
Article
PubMed
Google Scholar
Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129:564–83. https://doi.org/10.1093/brain/awl004.
Article
PubMed
Google Scholar
Maddock RJ, Garrett AS, Buonocore MH. Posterior cingulate cortex activation by emotional words: fMRI evidence from a valence decision task. Hum Brain Mapp. 2003;18:30–41. https://doi.org/10.1002/hbm.10075.
Article
PubMed
Google Scholar
Maddock RJ, Garrett AS, Buonocore MH. Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience. 2001;104:667–76. https://doi.org/10.1016/s0306-4522(01)00108-7.
Article
CAS
PubMed
Google Scholar
Chand GB, Dhamala M. The salience network dynamics in perceptual decision-making. Neuroimage. 2016;134:85–93. https://doi.org/10.1016/j.neuroimage.2016.04.018.
Article
PubMed
Google Scholar
Goulden N, Khusnulina A, Davis NJ, Bracewell RM, Bokde AL, McNulty JP, Mullins PG. The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM. Neuroimage. 2014;99:180–90. https://doi.org/10.1016/j.neuroimage.2014.05.052.
Article
PubMed
Google Scholar
Kilpatrick LA, Suyenobu BY, Smith SR, Bueller JA, Goodman T, Creswell JD, Naliboff BD. Impact of mindfulness-based stress reduction training on intrinsic brain connectivity. Neuroimage. 2011;56:290–8. https://doi.org/10.1016/j.neuroimage.2011.02.034.
Article
PubMed
Google Scholar
Hasenkamp W, Barsalou LW. Effects of meditation experience on functional connectivity of distributed brain networks. Front Hum Neurosci. 2012;6:38. https://doi.org/10.3389/fnhum.2012.00038.
Article
PubMed
PubMed Central
Google Scholar
Taylor VA, Daneault V, Grant J, Scavone G, Breton E, Roffe-Vidal S, Beauregard M. Impact of meditation training on the default mode network during a restful state. Soc Cogn Affect Neurosci. 2013;8:4–14. https://doi.org/10.1093/scan/nsr087.
Article
PubMed
Google Scholar
Froeliger B, Garland EL, Kozink RV, Modlin LA, Chen N-K, McClernon FJ, Sobin P. Meditation-state functional connectivity (msFC): strengthening of the dorsal attention network and beyond. Evid Based Complement Alternat Med. 2012;2012:680407. https://doi.org/10.1155/2012/680407.
Article
PubMed
PubMed Central
Google Scholar
Brewer JA, Worhunsky PD, Gray JR, Tang YY, Weber J, Kober H. Meditation experience is associated with differences in default mode network activity and connectivity. Proc Natl Acad Sci USA. 2011;108:20254–9. https://doi.org/10.1073/pnas.1112029108.
Article
PubMed
PubMed Central
Google Scholar
Jao T, Li CW, Vértes PE, Wu CW, Achard S, Hsieh CH, Bullmore ET. Large-scale functional brain network reorganization during Taoist meditation. Brain Connect. 2016;6:9–24. https://doi.org/10.1089/brain.2014.0318.
Article
PubMed
Google Scholar