Ponce FA, Lozano AM. Deep brain stimulation state of the art and novel stimulation targets. Prog Brain Res. 2010;184:311–24.
Article
PubMed
Google Scholar
Suthana N, Fried I. Deep brain stimulation for enhancement of learning and memory. Neuroimage. 2014;85(Pt 3):996–1002. https://doi.org/10.1016/j.neuroimage.2013.07.066.
Article
PubMed
Google Scholar
Sankar T, Chakravarty MM, Bescos A, Lara M, Obuchi T, Laxton AW, et al. Deep brain stimulation influences brain structure in Alzheimer’s disease. Brain Stimul. 2014. https://doi.org/10.1016/j.brs.2014.11.020.
Article
PubMed
PubMed Central
Google Scholar
Smith GS, Laxton AW, Tang-Wai DF, McAndrews MP, Diaconescu AO, Workman CI, et al. Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease. Arch Neurol. 2012;69:1141–8. https://doi.org/10.1001/archneurol.2012.590.
Article
PubMed
Google Scholar
Gondard E, Chau HN, Mann A, Tierney TS, Hamani C, Kalia SK, et al. Rapid modulation of protein expression in the rat hippocampus following deep brain stimulation of the fornix. Brain Stimul. 2015. https://doi.org/10.1016/j.brs.2015.07.044.
Article
PubMed
Google Scholar
Chamorro-López J, Miguéns M, Morgado-Bernal I, Kastanauskaite A, Selvas A, Cabané-Cucurella A, et al. Structural plasticity in hippocampal cells related to the facilitative effect of intracranial self-stimulation on a spatial memory task. Behav Neurosci. 2015. https://doi.org/10.1037/bne0000098.
Article
PubMed
Google Scholar
Ruiz-Medina J, Morgado-Bernal I, Redolar-Ripoll D, Aldavert-Vera L, Segura-Torres P. Intracranial self-stimulation facilitates a spatial learning and memory task in the Morris water maze. Neuroscience. 2008;154:424–30.
Article
PubMed
CAS
Google Scholar
Soriano-Mas C, Redolar-Ripoll D, Aldavert-Vera L, Morgado-Bernal I, Segura-Torres P. Post-training intracranial self-stimulation facilitates a hippocampus-dependent task. Behav Brain Res. 2005;160:141–7.
Article
PubMed
Google Scholar
Berthoud H-R, Münzberg H. The lateral hypothalamus as integrator of metabolic and environmental needs: from electrical self-stimulation to opto-genetics. Physiol Behav. 2011;104:29–39. https://doi.org/10.1016/j.physbeh.2011.04.051.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aldavert-Vera L, Huguet G, Costa-Miserachs D, de Ortiz SP, Kádár E, Morgado-Bernal I, et al. Intracranial self-stimulation facilitates active-avoidance retention and induces expression of c-Fos and Nurr1 in rat brain memory systems. Behav Brain Res. 2013;250:46–57. https://doi.org/10.1016/j.bbr.2013.04.025.
Article
PubMed
CAS
Google Scholar
Coulombe D, White N. The effect of post-training hypothalamic self-stimulation on sensory preconditioning in rats. Can J Psychol. 1982;36:57–66.
Article
PubMed
CAS
Google Scholar
García-Brito S, Morgado-Bernal I, Biosca-Simon N, Segura-Torres P. Intracranial self-stimulation also facilitates learning in a visual discrimination task in the Morris water maze in rats. Behav Brain Res. 2017;317:360–6. https://doi.org/10.1016/j.bbr.2016.09.069.
Article
PubMed
Google Scholar
Aldavert-Vera L, Costa-Miserachs D, Massanes-Rotger E, Soriano-Mas C, Segura-Torres P, Morgado-Bernal I. Facilitation of a distributed shuttle-box conditioning with posttraining intracranial self-stimulation in old rats. Neurobiol Learn Mem. 1997;67:254–8.
Article
PubMed
CAS
Google Scholar
Redolar-Ripoll D, Soriano-Mas C, Guillazo-Blanch G, Aldavert-Vera L, Segura-Torres P, Morgado-Bernal I. Posttraining intracranial self-stimulation ameliorates the detrimental effects of parafascicular thalamic lesions on active avoidance in young and aged rats. Behav Neurosci. 2003;117:246–56.
Article
PubMed
Google Scholar
Kadar E, Ramoneda M, Aldavert-Vera L, Huguet G, Morgado-Bernal I, Segura-Torres P. Rewarding brain stimulation reverses the disruptive effect of amygdala damage on emotional learning. Behav Brain Res. 2014;274:43–52. https://doi.org/10.1016/j.bbr.2014.07.050.
Article
PubMed
Google Scholar
Segura-Torres P, Aldavert-Vera L, Gatell-Segura A, Redolar-Ripoll D, Morgado-Bernal I. Intracranial self-stimulation recovers learning and memory capacity in basolateral amygdala-damaged rats. Neurobiol Learn Mem. 2010;93:117–26.
Article
PubMed
Google Scholar
Arvanitogiannis A, Tzschentke TM, Riscaldino L, Wise RA, Shizgal P. Fos expression following self-stimulation of the medial prefrontal cortex. Behav Brain Res. 2000;107:123.
Article
PubMed
CAS
Google Scholar
Huguet G, Aldavert-Vera L, Kádár E, Pena de Ortiz S, Morgado-Bernal I, Segura-Torres P. Intracranial self-stimulation to the lateral hypothalamus, a memory improving treatment, results in hippocampal changes in gene expression. Neuroscience. 2009;162:359–74.
Article
PubMed
CAS
Google Scholar
Kadar E, Aldavert-Vera L, Huguet G, Costa-Miserachs D, Morgado-Bernal I, Segura-Torres P. Intracranial self-stimulation induces expression of learning and memory-related genes in rat amygdala. Genes Brain Behav. 2011;10:69–77.
Article
PubMed
CAS
Google Scholar
Korb E, Finkbeiner S. Arc in synaptic plasticity: from gene to behavior. Trends Neurosci. 2011;34:591–8. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3207967&tool=pmcentrez&rendertype=abstract. Accessed 15 Mar 2016.
Messaoudi E, Kanhema T, Soule J, Tiron A, Dagyte G, da Silva B, et al. Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J Neurosci. 2007;27:10445–55.
Article
PubMed
CAS
Google Scholar
Kadar E, Huguet G, Aldavert-Vera L, Morgado-Bernal I, Segura-Torres P. Intracranial self stimulation upregulates the expression of synaptic plasticity related genes and Arc protein expression in rat hippocampus. Genes Brain Behav. 2013;12:771–9.
Article
PubMed
CAS
Google Scholar
Kádár E, Vico-Varela E, Aldavert-Vera L, Huguet G, Morgado-Bernal I, Segura-Torres P. Increase in c-Fos and Arc protein in retrosplenial cortex after memory-improving lateral hypothalamic electrical stimulation treatment. Neurobiol Learn Mem. 2016;128:117–24.
Article
PubMed
CAS
Google Scholar
Izquierdo I, Furini CRG, Myskiw JC. Fear memory. Physiol Rev. 2016;96:695–750. https://doi.org/10.1152/physrev.00018.2015.
Article
PubMed
Google Scholar
de Vasconcelos Pereira. A, Cassel J-C. The nonspecific thalamus: a place in a wedding bed for making memories last? Neurosci Biobehav Rev. 2015;54:175–96. https://doi.org/10.1016/j.neubiorev.2014.10.021.
Article
Google Scholar
Clark BJ, Harvey RE. Do the anterior and lateral thalamic nuclei make distinct contributions to spatial representation and memory? Neurobiol Learn Mem. 2016;133:69–78. https://doi.org/10.1016/j.nlm.2016.06.002.
Article
PubMed
Google Scholar
Mitchell AS. The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making. Neurosci Biobehav Rev. 2015;54:76–88. https://doi.org/10.1016/j.neubiorev.2015.03.001.
Article
PubMed
Google Scholar
Lecourtier L, Deschaux O, Arnaud C, Chessel A, Kelly PH, Garcia R. Habenula lesions alter synaptic plasticity within the fimbria–accumbens pathway in the rat. Neuroscience. 2006;141:1025–32. https://doi.org/10.1016/j.neuroscience.2006.04.018.
Article
PubMed
CAS
Google Scholar
Lecourtier L, DeFrancesco A, Moghaddam B. Differential tonic influence of lateral habenula on prefrontal cortex and nucleus accumbens dopamine release. Eur J Neurosci. 2008;27:1755–62. https://doi.org/10.1111/j.1460-9568.2008.06130.x.
Article
PubMed
PubMed Central
Google Scholar
Nishikawa T, Fage D, Scatton B. Evidence for, and nature of, the tonic inhibitory influence of habenulointerpeduncular pathways upon cerebral dopaminergic transmission in the rat. Brain Res. 1986;373:324–36. http://www.ncbi.nlm.nih.gov/pubmed/2424555. Accessed 15 Mar 2017.
Paxinos, G Watson C. The rat brain in stereotaxic coordinates. Sixth edit. Elsevier Academic Press; 2007.
Segura-Torres P, Capdevila-Ortis L, Marti-Nicolovius M, Morgado-Bernal I. Improvement of shuttle-box learning with pre- and post-trial intracranial self-stimulation in rats. Behav Brain Res. 1988;29:111–7.
Article
PubMed
CAS
Google Scholar
Aldavert-Vera L, Segura-Torres P, Costa-Miserachs D, Morgado-Bernal I. Shuttle-box memory facilitation by posttraining intracranial self-stimulation: differential effects in rats with high and low basic conditioning levels. Behav Neurosci. 1996;110:346–52.
Article
PubMed
CAS
Google Scholar
Aldavert-Vera L, Huguet G, Costa-Miserachs D, Ortiz SPD, Kádár E, Morgado-Bernal I, et al. Intracranial self-stimulation facilitates active-avoidance retention and induces expression of c-Fos and Nurr1 in rat brain memory systems. Behav Brain Res. 2013;250:46–57.
Article
PubMed
CAS
Google Scholar
Ruiz-Medina J, Redolar-Ripoll D, Morgado-Bernal I, Aldavert-Vera L, Segura-Torres P. Intracranial self-stimulation improves memory consolidation in rats with little training. Neurobiol Learn Mem. 2008;89:574–81.
Article
PubMed
Google Scholar
Lee I, Kesner RP. Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear-conditioning. Hippocampus. 2004;14:301–10. https://doi.org/10.1002/hipo.10177.
Article
PubMed
Google Scholar
Holloway CM, McIntyre CK. Post-training disruption of Arc protein expression in the anterior cingulate cortex impairs long-term memory for inhibitory avoidance training. Neurobiol Learn Mem. 2011;95:425–32. https://doi.org/10.1016/j.nlm.2011.02.002.
Article
PubMed
CAS
Google Scholar
Korb E, Wilkinson CL, Delgado RN, Lovero KL, Finkbeiner S. Arc in the nucleus regulates PML-dependent GluA1 transcription and homeostatic plasticity. Nat Neurosci. 2013;16:874–83. https://doi.org/10.1038/nn.3429.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shinohara Y, Hirase H, Watanabe M, Itakura M, Takahashi M, Shigemoto R. Left-right asymmetry of the hippocampal synapses with differential subunit allocation of glutamate receptors. Proc Natl Acad Sci USA. 2008;105:19498–503. https://doi.org/10.1073/pnas.0807461105.
Article
PubMed
Google Scholar
Shipton OA, El-Gaby M, Apergis-Schoute J, Deisseroth K, Bannerman DM, Paulsen O, et al. Left-right dissociation of hippocampal memory processes in mice. Proc Natl Acad Sci U S A. 2014;111:15238–43. https://doi.org/10.1073/pnas.1405648111.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zirlinger M, Kreiman G, Anderson DJ. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei. Proc Natl Acad Sci USA. 2001;98:5270.
Article
PubMed
CAS
Google Scholar
Partin AC, Hosek MP, Luong JA, Lella SK, Sharma SAR, Ploski JE. Amygdala nuclei critical for emotional learning exhibit unique gene expression patterns. Neurobiol Learn Mem. 2013;104:110–21. https://doi.org/10.1016/j.nlm.2013.06.015.
Article
PubMed
PubMed Central
Google Scholar
Choi J-S, Cain CK, LeDoux JE. The role of amygdala nuclei in the expression of auditory signaled two-way active avoidance in rats. Learn Mem. 2010;17:139–47. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2832923&tool=pmcentrez&rendertype=abstract. Accessed 16 Mar 2016.
Gouty-Colomer LA, Hosseini B, Marcelo IM, Schreiber J, Slump DE, Yamaguchi S, et al. Arc expression identifies the lateral amygdala fear memory trace. Mol Psychiatry. 2016;21:364–75. http://www.ncbi.nlm.nih.gov/pubmed/25802982. Accessed 13 Mar 2017.
Tsanov M, Vann SD, Erichsen JT, Wright N, Aggleton JP, O’Mara SM. Differential regulation of synaptic plasticity of the hippocampal and the hypothalamic inputs to the anterior thalamus. Hippocampus. 2011;21:1–8. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3928917&tool=pmcentrez&rendertype=abstract. Accessed 16 Mar 2016.
Khodadad A, Adelson PD, Lifshitz J, Thomas TC. The time course of activity-regulated cytoskeletal (ARC) gene and protein expression in the whisker-barrel circuit using two paradigms of whisker stimulation. Behav Brain Res. 2015;284:249–56. https://doi.org/10.1016/j.bbr.2015.01.032.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ota KT, Monsey MS, Wu MS, Young GJ, Schafe GE. Synaptic plasticity and NO-cGMP-PKG signaling coordinately regulate ERK-driven gene expression in the lateral amygdala and in the auditory thalamus following Pavlovian fear conditioning. Learn Mem. 2010;17:221–35. https://doi.org/10.1101/lm.1592510.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aggleton JP, Nelson AJD. Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits? Neurosci Biobehav Rev. 2015;54:131–44. https://doi.org/10.1016/j.neubiorev.2014.08.013.
Article
PubMed
PubMed Central
Google Scholar
Mizumori SJ, Williams JD. Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats. J Neurosci. 1993;13:4015–28. http://www.ncbi.nlm.nih.gov/pubmed/8366357.
van Groen T, Kadish I, Wyss JM. The role of the laterodorsal nucleus of the thalamus in spatial learning and memory in the rat. Behav Brain Res. 2002;136:329–37. https://doi.org/10.1016/S0166-4328(02)00199-7.
Article
PubMed
Google Scholar
Mair RG, Hembrook JR. Memory Enhancement with Event-Related Stimulation of the Rostral Intralaminar Thalamic Nuclei. J Neurosci. 2008;28:14293–300. https://doi.org/10.1523/JNEUROSCI.3301-08.2008.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mitchell AS, Sherman SM, Sommer MA, Mair RG, Vertes RP, Chudasama Y. Advances in understanding mechanisms of thalamic relays in cognition and behavior. J Neurosci. 2014;34:15340–6. https://doi.org/10.1523/JNEUROSCI.3289-14.2014.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kirouac GJ. Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neurosci Biobehav Rev. 2015;56:315–29. https://doi.org/10.1016/j.neubiorev.2015.08.005.
Article
PubMed
Google Scholar
Penzo MA, Robert V, Tucciarone J, De Bundel D, Wang M, Van Aelst L, et al. The paraventricular thalamus controls a central amygdala fear circuit. Nature. 2015;519:455–9. https://doi.org/10.1038/nature13978.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lin H-C, Pan H-C, Lin S-H, Lo Y-C, Shen ET-H, Liao L-D, et al. Central thalamic deep-brain stimulation alters striatal-thalamic connectivity in cognitive neural behavior. Front Neural Circuits. 2015;9:87. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4710746&tool=pmcentrez&rendertype=abstract. Accessed 16 Mar 2016.
Katz IK, Lamprecht R. Fear conditioning leads to alteration in specific genes expression in cortical and thalamic neurons that project to the lateral amygdala. J Neurochem. 2015;132:313–26. https://doi.org/10.1111/jnc.12983.
Article
PubMed
CAS
Google Scholar
Aggleton JP. Understanding retrosplenial amnesia: insights from animal studies. Neuropsychologia. 2010;48:2328–38. https://doi.org/10.1016/j.neuropsychologia.2009.09.030.
Article
PubMed
Google Scholar
Van der Werf Yd, Witter MP, Uylings HB, Jolles J. Neuropsycology of infarctions in the thalamus: a review. Neuropsychologia. 2000;38:613–27.
Article
PubMed
CAS
Google Scholar
Morissette MC, Boye SM. Electrolytic lesions of the habenula attenuate brain stimulation reward. Behav Brain Res. 2008;187:17–26.
Article
PubMed
Google Scholar
Gifuni AJ, Jozaghi S, Gauthier-Lamer AC, Boye SM. Lesions of the lateral habenula dissociate the reward-enhancing and locomotor-stimulant effects of amphetamine. Neuropharmacology. 2012;63:945–57. https://doi.org/10.1016/j.neuropharm.2012.07.032.
Article
PubMed
CAS
Google Scholar
Duchesne V, Boye SM. Differential contribution of mesoaccumbens and mesohabenular dopamine to intracranial self-stimulation. Neuropharmacology. 2013;70:43–50. https://doi.org/10.1016/j.neuropharm.2013.01.005.
Article
PubMed
CAS
Google Scholar
Goutagny R, Loureiro M, Jackson J, Chaumont J, Williams S, Isope P, et al. Interactions between the lateral habenula and the hippocampus: implication for spatial memory processes. Neuropsychopharmacology. 2013;38:1–9. https://doi.org/10.1038/npp.2013.142.
Article
Google Scholar
Hunt GE, McGregor IS. Rewarding brain stimulation induces only sparse Fos-like immunoreactivity in dopaminergic neurons. Neuroscience. 1998;83:501–15.
Article
PubMed
CAS
Google Scholar
Chergui K, Nomikos GG, Mathe JM, Gonon F, Svensson TH. Burst stimulation of the medial forebrain bundle selectively increase Fos-like immunoreactivity in the limbic forebrain of the rat. Neuroscience. 1996;72:141–56.
Article
PubMed
CAS
Google Scholar
White N, Major R. Facilitation of retention by self-stimulation and by experimenter-administered stimulation. Can J Psychol. 1978;32:116–23.
Article
PubMed
CAS
Google Scholar
Segura-Torres P, Portell-Cortes I, Morgado-Bernal I. Improvement of shuttle-box avoidance with post-training intracranial self-stimulation, in rats: a parametric study. Behav Brain Res. 1991;42:161–7.
Article
PubMed
CAS
Google Scholar