Forno LS. Neuropathologic features of Parkinson’s, Huntington’s, and Alzheimer’s diseases. Ann N Y Acad Sci. 1992;648:6–16.
Article
CAS
PubMed
Google Scholar
Forno LS. Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol. 1996;55:259–72.
Article
CAS
PubMed
Google Scholar
Polymeropoulos MH. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–7.
Article
CAS
PubMed
Google Scholar
Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, et al. The ubiquitin pathway in Parkinson’s disease. Nature. 1998;395:451–2.
Article
CAS
PubMed
Google Scholar
Gupta A, Dawson VL, Dawson TM. What causes cell death in Parkinson’s disease? Ann Neurol. 2008. doi:10.1002/ana.21573.
PubMed
PubMed Central
Google Scholar
Schulz JB. Mechanisms of neurodegeneration in idiopathic Parkinson's disease. Parkinsonism Relat Disord. 2007;13 Suppl 3:S306–8. doi:10.1016/S1353-8020(08)70021-X.
Article
PubMed
Google Scholar
Whitworth AJ. Drosophila models of Parkinson’s disease. Adv Genet. 2011;73:1–50.
Article
CAS
PubMed
Google Scholar
Ambegaokar SS, Roy B, Jackson GR. Neurodegenerative models in Drosophila: polyglutamine disorders, Parkinson disease, and amyotrophic lateral sclerosis. Neurobiol Dis. 2010;40:29–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gasser T. Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Rev Mol Med. 2009;11:e22. doi:10.1017/S1462399409001148.
Article
PubMed
Google Scholar
Guo M. Drosophila as a model to study mitochondrial dysfunction in Parkinson's disease. Cold Spring Harb Perspect Med. 2012;2(11). doi:10.1101/cshperspect.a009944.
Dehay B, Vila M, Bezard E, Brundin P, Kordower JH. Alpha-synuclein propagation: new insights from animal models. Mov Disord. 2015. doi:10.1002/mds.26370.
PubMed
Google Scholar
Feany MB, Bender WW. A Drosophila model of Parkinson’s disease. Nature. 2000;404:394–8.
Article
CAS
PubMed
Google Scholar
Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science. 2002;295:865–8.
Article
CAS
PubMed
Google Scholar
Buttner S, Broeskamp F, Sommer C, Markaki M, Habernig L, Alavian-Ghavanini A, et al. Spermidine protects against alpha-synuclein neurotoxicity. Cell Cycle (Georgetown, Tex). 2014;13:3903–8.
Article
Google Scholar
Kong Y, Liang X, Liu L, Zhang D, Wan C, Gan Z, et al. High throughput sequencing identifies microRNAs mediating α-synuclein toxicity by targeting neuroactive-ligand receptor interaction pathway in early stage of Drosophila Parkinson’s disease model. PLoS One. 2015;10:e0137432.
Article
PubMed
PubMed Central
Google Scholar
Wang B, Liu Q, Shan H, Xia C, Liu Z. Nrf2 inducer and cncC overexpression attenuates neurodegeneration due to alpha-synuclein in Drosophila. Biochem Cell Biol. 2015;93:351–8.
Article
CAS
PubMed
Google Scholar
Zhu ZJ, Wu KC, Yung WH, Qian ZM, Ke Y. Differential interaction between iron and mutant alpha-synuclein causes distinctive Parkinsonian phenotypes in Drosophila. Biochim Biophys Acta. 2016. doi:10.1016/j.bbadis.2016.01.002.
Google Scholar
Staveley BE. Drosophila models of Parkinson disease. In: LeDoux MS, editor. Movement disorders: genetics and models. 2nd ed. Amsterdam: Elsevier; 2014. p. 345–54.
Google Scholar
Botella JAA, Bayersdorfer F, Gmeiner F, Schneuwly S. Modelling Parkinson’s disease in Drosophila. Neuromolecular Med. 2009;11:268–80.
Article
CAS
PubMed
Google Scholar
Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993;118:401–15.
CAS
PubMed
Google Scholar
Chinta SJ, Mallajosyula JK, Rane A, Andersen JK. Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett. 2010;486:235–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choubey V, Safiulina D, Vaarmann A, Cagalinec M, Wareski P, Kuum M, et al. Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy. J Biol Chem. 2011;286:10814–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Esteves AR, Arduino DM, Silva DF, Oliveira CR, Cardoso SM. Mitochondrial dysfunction: the road to alpha-synuclein oligomerization in PD. Parkinson’s Dis. 2011;2011:693761.
CAS
Google Scholar
Zhu Y, Duan C, Lu L, Gao H, Zhao C, Yu S, et al. α-Synuclein overexpression impairs mitochondrial function by associating with adenylate translocator. Int J Biochem Cell Biol. 2011;43:732–41.
Article
CAS
PubMed
Google Scholar
Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998;281:1322–6.
Article
CAS
PubMed
Google Scholar
Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.
Article
CAS
PubMed
Google Scholar
Fu YF, Fan TJ. Bcl-2 family proteins and apoptosis. Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica. 2002;34:389–94.
CAS
PubMed
Google Scholar
Siddiqui WA, Ahad A, Ahsan H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol. 2015;89:289–317.
Article
CAS
PubMed
Google Scholar
Tsujimoto Y. Bcl-2 family of proteins: life-or-death switch in mitochondria. Biosci Rep. 2002;22:47–58.
Article
CAS
PubMed
Google Scholar
Suen DF, Norris KL, Youle RJ. Mitochondrial dynamics and apoptosis. Genes Dev. 2008;22:1577–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colin J, Gaumer S, Guenal I, Mignotte B. Mitochondria, Bcl-2 family proteins and apoptosomes: of worms, flies and men. Front Biosci (Landmark edition). 2009;14:4127–37.
Article
CAS
Google Scholar
Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell. 2011;21:92–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siddiqui WA, Ahad A, Ahsan H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol. 2015;89:289–317.
Article
CAS
PubMed
Google Scholar
Vela L, Marzo I. Bcl-2 family of proteins as drug targets for cancer chemotherapy: the long way of BH3 mimetics from bench to bedside. Curr Opin Pharmacol. 2015;23:74–81.
Article
CAS
PubMed
Google Scholar
Zheng J, Viacava Follis A, Kriwacki RW, Moldoveanu T. Discoveries and controversies in BCL-2 proteins-mediated apoptosis. FEBS J. 2015. doi:10.1111/febs.13527.
Google Scholar
Delbridge AR, Strasser A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ. 2015;22:1071–80.
Article
CAS
PubMed
Google Scholar
Doerflinger M, Glab JA, Puthalakath H. BH3-only proteins: a 20-year stock-take. FEBS J. 2015;282:1006–16.
Article
CAS
PubMed
Google Scholar
Li MX, Dewson G. Mitochondria and apoptosis: emerging concepts. F1000prime reports. 2015;7:42.
Lopez J, Tait SW. Mitochondrial apoptosis: killing cancer using the enemy within. Br J Cancer. 2015;112:957–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang C, Youle RJ. The role of mitochondria in apoptosis*. Annu Rev Genet. 2009;43:95–118.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCall K, Steller H. Facing death in the fly: genetic analysis of apoptosis in Drosophila. Trends Genet TIG. 1997;13:222–6.
Article
CAS
PubMed
Google Scholar
Richardson H, Kumar S. Death to flies: Drosophila as a model system to study programmed cell death. J Immunol Methods. 2002;265:21–38.
Article
CAS
PubMed
Google Scholar
Kornbluth S, White K. Apoptosis in Drosophila: neither fish nor fowl (nor man, nor worm). J Cell Sci. 2005;118:1779–87.
Article
CAS
PubMed
Google Scholar
Brachmann CB, Jassim OW, Wachsmuth BD, Cagan RL. The Drosophila bcl-2 family member dBorg-1 functions in the apoptotic response to UV-irradiation. Curr Biol. 2000;10:547–50.
Article
CAS
PubMed
Google Scholar
Colussi PA, Quinn LM, Huang DC, Coombe M, Read SH, Richardson H, et al. Debcl, a proapoptotic Bcl-2 homologue, is a component of the Drosophila melanogaster cell death machinery. J Cell Biol. 2000;148:703–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Igaki T, Kanuka H, Inohara N, Sawamoto K, Nunez G, Okano H, et al. Drob-1, a Drosophila member of the Bcl-2/CED-9 family that promotes cell death. Proc Natl Acad Sci USA. 2000;97:662–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Huang Q, Ke N, Matsuyama S, Hammock B, Godzik A, et al. Drosophila pro-apoptotic Bcl-2/Bax homologue reveals evolutionary conservation of cell death mechanisms. J Biol Chem. 2000;275:27303–6.
CAS
PubMed
Google Scholar
Quinn L, Coombe M, Mills K, Daish T, Colussi P, Kumar S, et al. Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J. 2003;22:3568–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 2006;441:1157–61.
Article
CAS
PubMed
Google Scholar
Sevrioukov EA, Burr J, Huang EW, Assi HH, Monserrate JP, Purves DC, et al. Drosophila Bcl-2 proteins participate in stress-induced apoptosis, but are not required for normal development. Genesis. 2007;45:184–93.
Article
CAS
PubMed
Google Scholar
Tanner EA, Blute TA, Brachmann CB, McCall K. Bcl-2 proteins and autophagy regulate mitochondrial dynamics during programmed cell death in the Drosophila ovary. Development. 2011;138:327–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinn L, Coombe M, Mills K, Daish T, Colussi P, Kumar S, et al. Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J. 2003;22:3568–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu JN, Nguyen N, Aghazarian M, Tan Y, Sevrioukov EA, Mabuchi M, et al. Grim promotes programmed cell death of Drosophila microchaete glial cells. Mech Dev. 2010;127:407–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haywood AF, Staveley BE. Parkin counteracts symptoms in a Drosophila model of Parkinson’s disease. BMC Neurosci. 2004;5:14.
Article
PubMed
PubMed Central
Google Scholar
Haywood AF, Staveley BE. Mutant alpha-synuclein-induced degeneration is reduced by parkin in a fly model of Parkinson’s disease. Genome. 2006;49:505–10.
Article
CAS
PubMed
Google Scholar
Todd AM, Staveley BE. Pink1 suppresses alpha-synuclein-induced phenotypes in a Drosophila model of Parkinson’s disease. Genome. 2008;51:1040–6.
Article
CAS
PubMed
Google Scholar
Clavier A, Baillet A, Rincheval-Arnold A, Coleno-Costes A, Lasbleiz C, Mignotte B, et al. The pro-apoptotic activity of Drosophila Rbf1 involves dE2F2-dependent downregulation of diap1 and buffy mRNA. Cell Death Dis. 2014;5:e1405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Chaney S, Roberts IJ, Forte M, Hirsh J. Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr Biol. 2000;10:211–4.
Article
CAS
PubMed
Google Scholar
Freeman M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell. 1996;87:651–60.
Article
CAS
PubMed
Google Scholar
Staveley BE, Phillips JP, Hilliker AJ. Phenotypic consequences of copper-zinc superoxide dismutase overexpression in Drosophila melanogaster. Genome. 1990;33:867–72.
Article
CAS
PubMed
Google Scholar
Todd AM, Staveley BE. Novel assay and analysis for measuring climbing ability in Drosophila. Drosoph Inf Serv. 2004;87:101–7.
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.
Article
CAS
PubMed
Google Scholar
M’Angale PG, Staveley BE. Effects of α-synuclein expression in the developing Drosophila eye. Drosoph Inf Serv. 2012;95:85–9.
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539. doi:10.1038/msb.2011.75.
Article
PubMed
PubMed Central
Google Scholar
Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, et al. A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic Acids Res. 2010;38:W695–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43:D222–6.
Article
PubMed
PubMed Central
Google Scholar