- Poster presentation
- Open Access
- Published:
Comparison of methods to calculate exact spike times in integrate-and-fire neurons with exponential currents
BMC Neuroscience volume 9, Article number: P131 (2008)
Discrete-time neuronal network simulation strategies typically constrain spike times to a grid determined by the computational step size. This approach can have the effect of introducing artificial synchrony [1]. However, time-continuous approaches can be computationally demanding, both with respect to calculating future spike times and to event management, particularly for large network sizes. To address this problem, Morrison et al. [2] presented a general method of handling off-grid spiking in combination with exact subthreshold integration in discrete time driven simulations [3, 4]. Within each time step an event-driven environment is emulated to process incoming spikes, whereas the timing of outgoing spikes is based on interpolation. Therefore, the computation step size is a decisive factor for both integration error and simulation time.
An alternative approach for calculating the exact spike times of integrate-and-fire neurons with exponential currents was recently published by Brette [5]. The problem of accurate detection of the first threshold crossing of the membrane potential is converted into finding the largest root of a polynomial. Common numerical means like Descartes' rule and Sturm's theorem are applicable. Although this approach was developed in the context of event-driven simulations, we take advantage of its ability to predict future threshold crossings in the time-driven environment of NEST [3]. We compare the accuracy of the two approaches in single-neuron simulations and the efficiency in a balanced random network of 10,000 neurons [6]. We show that the network simulation time when using the polynomial method depends only weakly on the computational step size, and the single neuron integration error is independent of it. Although the polynomial method attains the maximum precision expected from double numerics for all input rates and computation step sizes, the interpolation method is more efficient for input rates above a critical value. For applications where a lesser degree of precision is acceptable, the interpolation method is more efficient for all input rates.
References
Hansel D, Mato G, Meunier C, Neltner L: On numerical simulations of integrate-and-fire neural networks. Neural Comput. 1998, 10 (2): 467-483. 10.1162/089976698300017845.
Morrison A, Straube S, Plesser HE, Diesmann M: Exact subthreshold integration with continuous spike times in discrete-time neural network simulations. Neural Comput. 2007, 19 (1): 47-79. 10.1162/neco.2007.19.1.47.
Gewaltig M-O, Diesmann M: NEST. Scholarpedia. 2007, 2 (4): 1430-
Rotter S, Diesmann M: Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biol Cybern. 1999, 81 (5–6): 381-402. 10.1007/s004220050570.
Brette R: Exact simulation of integrate-and-fire models with exponential currents. Neural Comput. 2007, 19 (10): 2604-2609. 10.1162/neco.2007.19.10.2604.
Brunel N: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci. 2000, 8 (3): 183-208. 10.1023/A:1008925309027.
Acknowledgements
Partially funded by DIP F1.2, BMBF Grant 01GQ0420 to the Bernstein Center for Computational Neuroscience Freiburg, and EU Grant 15879 (FACETS).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Hanuschkin, A., Kunkel, S., Helias, M. et al. Comparison of methods to calculate exact spike times in integrate-and-fire neurons with exponential currents. BMC Neurosci 9 (Suppl 1), P131 (2008). https://doi.org/10.1186/1471-2202-9-S1-P131
Published:
DOI: https://doi.org/10.1186/1471-2202-9-S1-P131
Keywords
- Input Rate
- Interpolation Method
- Spike Time
- Integration Error
- Polynomial Method