Skip to main content

Dynamical evolution of spatiotemporal patterns in mammalian middle cortex


Neural systems think through patterns of activity. We have recently discovered that in an isotropic preparation of tangential slices of the middle cortical layers of mammalian brain, spontaneously organizing episodes of activity demonstrate a dynamical evolution: such episodes initiate with irregular and chaotic wave activity, followed by the frequent emergence of plane and spiral waves, and terminate with the recurrence of irregular wave patterns [1].


We have employed techniques drawn from experimental fluid dynamics to better understand these phenomena. In voltage sensitive dye imaging from fields of neurons, we applied an empirical eigenfunction approach, using singular value decomposition (SVD) in both amplitude and spatial frequency domain.


The temporal structure of such modes emphasize the crystalline nature of the brain lattice – neurons are fixed in space, and 'wave' activity is a function of the phase relationships of the firing neurons. Calculating the effective dimensionality as in [2] we find that the dynamics tend to concentrate into a small number of dominant coherent modes as these episodes organize, and then disseminate onto a larger number of modes prior to termination.

For modes composed of voltage amplitude or spatial frequency, the dynamics of these phenomena show a monotonic and significant decrease in dimension during the middle of the events (ANOVA: amplitude, F = 1950, p < 0.00001; frequency, F = 2058, p < 0.00001), and post-hoc Tukey multiple comparison testing confirms that there is a significant decrease in dimensionality during the middle of these episodes.


This analysis demonstrates that a key factor in this dimensional evolution is not the appearance of qualitative spirals or plane waves, but rather depends on more subtle features within the interactions of these neurons. Further work to define the relevant order parameters that control the evolution of these spatiotemporal dynamics will lead to a better understanding of cortical information processing.


  1. Huang X, Troy WC, Yang Q, Ma H, Laing CR, Schiff SJ, Wu J-Y: Spiral waves in disinhibited mammalian cortex. J Neurosci. 2004, 24: 9897-9902. 10.1523/JNEUROSCI.2705-04.2004.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Sirovich L: Chaotic dynamics of coherent structures. Physica D. 1989, 37: 126-145. 10.1016/0167-2789(89)90123-1.

    Article  Google Scholar 

Download references


Supported by NIH grants R01MH50006, K02MH01493, R01NS036447.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Steven J Schiff.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Schiff, S.J., Huang, X. & Wu, JY. Dynamical evolution of spatiotemporal patterns in mammalian middle cortex. BMC Neurosci 8 (Suppl 2), P61 (2007).

Download citation

  • Published:

  • DOI:


  • Spatial Frequency
  • Singular Value Decomposition
  • Spiral Wave
  • Irregular Wave
  • Coherent Mode