- Poster presentation
- Open access
- Published:
Resonance of coefficient of variation induced by rebound currents for stochastic inhibitory inputs
BMC Neuroscience volume 8, Article number: P54 (2007)
We study a Hodgkin-Huxley type neuron model describing the firing properties of an endogenously oscillating subthalamic neuron [1] incorporating a low-voltage activated (T-type) calcium current when the cell is affected by random alpha function inhibitory inputs (frequency, λ). The postinhibitory rebound current (parameterized by its maximal conductance, GT) caused by the brief inputs can induce output spikes in response to two or more coincident arrivals or even a single strong enough inhibitory arrival [2]. Thus the output firing sequence becomes random, while the firing rate increases with λ. For small GT, the coefficient of variation (CV) of the output spike sequence also increases with λ, but when the rebound is strong, the CV exhibits an unexpected and prominent local maximum at a preferred input frequency. At the preferred frequency, the firing rate has a maximum slope. Weaker input amplitudes can increase the preferred frequency, but the cell's firing rate, at the preferred λ, is independent of the input strength. This phenomenon may be useful in characterizing and identifying cells [3] that receive complex pattern of inhibitory inputs like those in subthalamic nucleus with T-type calcium currents [4].
References
Terman D, Rubin JE, Yew AC, Wilson CJ: Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci. 2002, 22: 2963-2976.
Dodla R, Rinzel J: Enhanced neuronal response induced by fast inhibition. Phys Rev E. 2006, 73: 010903(R)-10.1103/PhysRevE.73.010903.
Hutcheon B, Yarom Y: Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci. 2000, 23: 216-222. 10.1016/S0166-2236(00)01547-2.
Hallworth NE, Bevan MD: Globus pallidus neurons dynamically regulate the activity pattern of subthalamic nucleus neurons through the frequency-dependent activation of postsynaptic GABAA and GABAB receptors. J Neurosci. 2005, 25: 6304-6315. 10.1523/JNEUROSCI.0450-05.2005.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Dodla, R., Wilson, C.J. Resonance of coefficient of variation induced by rebound currents for stochastic inhibitory inputs. BMC Neurosci 8 (Suppl 2), P54 (2007). https://doi.org/10.1186/1471-2202-8-S2-P54
Published:
DOI: https://doi.org/10.1186/1471-2202-8-S2-P54