Skip to main content
  • Poster presentation
  • Open access
  • Published:

Stability of splay states for pulse-coupled neuronal networks: finite size versus finite pulse-width effects

The dynamics of collective states observed in globally coupled neuronal networks is still an open problem. In particular, although it is claimed that the periodic firing state ("splay state") is stable only for excitatory coupling [1], counterexamples have been found for inhibitory coupling as well [2]. Moreover, the stability of the splay states has been analyzed only in the mean field limit [1, 3, 4]. Our aim is to investigate simultaneously, for a pulse-coupled network of leaky integrate-and fire neurons, the effect of the number N of neurons as well as of the pulse-width of the post-synaptic potentials. Finite-N networks can be studied by suitably modifying the map-like formalism [5, 6] usually adopted to implement numerically the model. As a result, we find that the stability of the splay state depends crucially on a parameter that is proportional to the width of the delivered pulses rescaled to the average interspike interval. More precisely, we show that the Floquet spectrum of eigenvalues is made of two components, one of which coincides with that one predicted by the mean-field analysis [1]. Depending on the value of the relevant parameter, the second component may be responsible for the occurrence of instabilities which in turn suggest the failure of the continuum limit approximation. Finally, for sufficiently small pulse-width we observe that the splay state can be stable even for inhibitory coupling.


  1. Abbott LF, van Vreeswijk C: Asynchronous states in networks of pulse-coupled oscillators. Phys Rev E. 1993, 48: 1483-1490. 10.1103/PhysRevE.48.1483.

    Article  Google Scholar 

  2. Zillmer R, Livi R, Politi A, Torcini A: Desynchronization in diluted neural networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2006, 74: 036203-10.1103/PhysRevE.74.036203.

    Article  PubMed  Google Scholar 

  3. van Vreeswijk C: Partial synchronization in population of pulse-coupled oscillators. Phys Rev E. 1996, 54: 5522-5537. 10.1103/PhysRevE.54.5522.

    Article  CAS  Google Scholar 

  4. Mohanty PK, Politi A: A new approach to partial synchronization in globally coupled rotators. J Phys A: Math Gen. 2006, 39: L415-L418. 10.1088/0305-4470/39/26/L01.

    Article  Google Scholar 

  5. Jin Z: Fast convergence of spike sequences to periodic patterns in recurrent networks. Phys Rev Lett. 2002, 89: 208102-10.1103/PhysRevLett.89.208102.

    Article  PubMed  Google Scholar 

  6. Bressloff PC, Coombes S: A dynamical theory of spike train transitions in networks of integrate-and-fire oscillators. SIAM J Appl Math. 2000, 60: 820-841. 10.1137/S0036139998339643.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alessandro Torcini.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Torcini, A., Zillmer, R., Livi, R. et al. Stability of splay states for pulse-coupled neuronal networks: finite size versus finite pulse-width effects. BMC Neurosci 8 (Suppl 2), P18 (2007).

Download citation

  • Published:

  • DOI: