- Poster presentation
- Open access
- Published:
Temporal coding of continuously-varying inputs
BMC Neuroscience volume 8, Article number: P175 (2007)
In many neural circuits, precise patterns of spike timing contain information beyond that contained in mean firing rates. Here we illustrate a simple mechanism by which an ensemble of leaky-integrate-and-fire (LIF) neurons can represent continuously-varying input signals in a timing code. Neurons that are post-synaptic to this ensemble can reliably extract these signals (or functions thereof) in the absence of both spike time coincidence and firing rate variations.
Irregular firing is often modelled phenomenologically, for example as a Poisson process with a rate that depends on synaptic input. In contrast, the irregular firing of our LIF neurons is a deterministic consequence of wide variations in applied current over the space of inputs (e.g. Figure 1A). Applied current functions of this kind can arise from weighted output from a previous layer, and we discuss their establishment via Hebbian plasticity. By inclining these functions along a preferred direction, and scaling the peaks, we obtain a continuum between timing and rate codes.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Tripp, B., Eliasmith, C. Temporal coding of continuously-varying inputs. BMC Neurosci 8 (Suppl 2), P175 (2007). https://doi.org/10.1186/1471-2202-8-S2-P175
Published:
DOI: https://doi.org/10.1186/1471-2202-8-S2-P175