Skip to main content

Optimization of electrode channels in a visual discrimination task


Independent component analysis (ICA) is a well accepted blind source separation technique in electroencephalography (EEG) analysis to separate the independent sources of the electrical brain activity. Usually, the number of electrode channels in EEG analysis is selected arbitrarily in the cortical region of interest without any systematic study.


The number and location of scalp electrodes in a visual discrimination task were optimized by using ICA on a publicly available EEG database [1], a collection of 31-channel raw data from 14 human subjects who performed a go-nogo categorization task and a go-nogo recognition task on natural photographs. The data were artifacts removed, average referenced, baseline removed, bandwidth (0.5 – 35 Hz) filtered, and epoched with 100 ms before and 1000 ms after the presentation of the cue. Three different sets of data consisting of 31, 16, and 8 channels with respect to the 10–20 international electrode placement criterion were generated for each of the categorization and recognition tasks. ICA was performed and event related potentials (ERPs) and 2-D maps of the independent components were compared for each of the data sets in the two tasks.


Separate comparisons of ERPs and 2-D maps of the independent components in the target and non-target categorization task show that most of the components do not have a significant difference with increasing the number of channels from 8 to 31. However, for a number of the components, there exists some performance difference using 8 and 16 channels; but no significant difference between 16 and 31 channels. Similar results were observed in the recognition task and in different participant groups.


This study suggests that it was not helpful to include more than 16 channels in the visual discrimination task. Therefore, it is possible to reduce time, physical and computation efforts, and subject discomfort by using smaller number of electrodes when a systematic optimization is performed.


  1. Delorme A, Rousselet G, Mace MJ-M, Fabre-Thorpe M: Interaction of top-down and bottom-up processing in the fast visual analysis of natural scenes. Cognitive Brain Research. 2004, 19: 103-113. 10.1016/j.cogbrainres.2003.11.010.

    Article  PubMed  Google Scholar 

Download references


This work was supported by the "Keystone Innovation Zone Grant from the Economic Development Council of the Commonwealth of Pennsylvania", USA.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Steven Schiff.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Kamrunnahar, M.(., Schiff, S. Optimization of electrode channels in a visual discrimination task. BMC Neurosci 8 (Suppl 2), P139 (2007).

Download citation

  • Published:

  • DOI:


  • Independent Component Analysis
  • Categorization Task
  • Recognition Task
  • Event Related Potential
  • Electrode Placement