Skip to main content
  • Poster presentation
  • Open access
  • Published:

Physical interactions between D1 and NMDA receptors as a possible inhibitory mechanism to avoid excessive NMDA currents

Coactivation of N-methyl-D-aspartate (NMDA) and dopamine (DA) receptors generates a potentially feed-forward system that could lead to excessive NMDA currents [1]. Through second messenger systems, activation of NMDA receptors increases the presence of the D1 subtype of DA receptors in dendritic spines in striatum [2]. Likewise, activation of D1 receptors increases the number of NMDA receptors in synaptic regions in striatum [3, 4]. Given the potential contribution of NMDA receptor activation to apoptosis, there must be some mechanism to limit the expression of NMDA currents. This mechanism is not yet currently known, however. Cepeda and Levine [1] have suggested that physical interactions may serve as a limiting mechanism to this positive feedback system. It is known that physical interactions between D1 and NMDA receptors may lead to formation of D1/NMDA complexes and may inhibit NMDA currents [5]. We use both dynamical systems and agent-based modeling techniques to investigate whether such physical interactions are sufficient to generate a stable fixed point for NMDA current levels or, more generally, to bound NMDA currents.

References

  1. Cepeda C, Levine MS: Where do you think you are going? The NMDA-D1 receptor trap. Science STKE. 2006, 2006: pe20-10.1126/stke.3332006pe20.

    Google Scholar 

  2. Scott L, Kruse MS, Forssberg H, Brismar H, Greengard P, Aperia A: Selective up-regulation of dopamine D1 receptors in dendritic spines by NMDA receptor activation. Proc Natl Acad Sci USA. 2002, 99: 1661-1664. 10.1073/pnas.032654599.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Dunah AW, Sirianni AC, Fienberg AA, Bastia E, Schwarzschild MA, Standaert DG: Dopamine D1-dependent trafficking of striatal N-methyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32. Mol Pharmacol. 2004, 65: 121-129. 10.1124/mol.65.1.121.

    Article  PubMed  CAS  Google Scholar 

  4. Dunah AW, Standaert DG: Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci. 2001, 21: 5546-5558.

    PubMed  CAS  Google Scholar 

  5. Fiorentini C, Gardoni F, Spano P, Di Luca M, Missale C: Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-D-aspartate receptors. J Biol Chem. 2003, 278: 20196-20202. 10.1074/jbc.M213140200.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Rubin.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Smith, D.B., Udeigwe, L.C. & Rubin, J. Physical interactions between D1 and NMDA receptors as a possible inhibitory mechanism to avoid excessive NMDA currents. BMC Neurosci 8 (Suppl 2), P111 (2007). https://doi.org/10.1186/1471-2202-8-S2-P111

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/1471-2202-8-S2-P111

Keywords