Martini R: Expression and functional roles of neural cell surface molecules and extracellular matrix components during development and regeneration of peripheral nerves. J Neurocytol. 1994, 23: 1-28. 10.1007/BF01189813.
Article
PubMed
CAS
Google Scholar
Lefcort F, Venstrom K, McDonald JA, Reichardt LF: Regulation of expression of fibronectin and its receptor, alpha 5 beta 1, during development and regeneration of peripheral nerve. Development. 1992, 116: 767-782.
PubMed
CAS
PubMed Central
Google Scholar
Wallquist W, Patarroyo M, Thams S, Carlstedt T, Stark B, Cullheim S, Hammarberg H: Laminin chains in rat and human peripheral nerve: distribution and regulation during development and after axonal injury. J Comp Neurol. 2002, 454: 284-293. 10.1002/cne.10434.
Article
PubMed
CAS
Google Scholar
Schwarzbauer JE, Tamkun JW, Lemischka IR, Hynes RO: Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell. 1983, 35: 421-431. 10.1016/0092-8674(83)90175-7.
Article
PubMed
CAS
Google Scholar
Schwarzbauer JE, Patel RS, Fonda D, Hynes RO: Multiple sites of alternative splicing of the rat fibronectin gene transcript. Embo J. 1987, 6: 2573-2580.
PubMed
CAS
PubMed Central
Google Scholar
Tamkun JW, Schwarzbauer JE, Hynes RO: A single rat fibronectin gene generates three different mRNAs by alternative splicing of a complex exon. Proc Natl Acad Sci U S A. 1984, 81: 5140-5144. 10.1073/pnas.81.16.5140.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kornblihtt AR, Umezawa K, Vibe-Pedersen K, Baralle FE: Primary structure of human fibronectin: differential splicing may generate at least 10 polypeptides from a single gene. Embo J. 1985, 4: 1755-1759.
PubMed
CAS
PubMed Central
Google Scholar
Gutman A, Kornblihtt AR: Identification of a third region of cell-specific alternative splicing in human fibronectin mRNA. Proc Natl Acad Sci U S A. 1987, 84: 7179-7182. 10.1073/pnas.84.20.7179.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zardi L, Carnemolla B, Siri A, Petersen TE, Paolella G, Sebastio G, Baralle FE: Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. Embo J. 1987, 6: 2337-2342.
PubMed
CAS
PubMed Central
Google Scholar
Wayner EA, Garcia-Pardo A, Humphries MJ, McDonald JA, Carter WG: Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS-1) in plasma fibronectin. J Cell Biol. 1989, 109: 1321-1330. 10.1083/jcb.109.3.1321.
Article
PubMed
CAS
Google Scholar
Guan JL, Hynes RO: Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor alpha 4 beta 1. Cell. 1990, 60: 53-61. 10.1016/0092-8674(90)90715-Q.
Article
PubMed
CAS
Google Scholar
ffrench-Constant C: Alternative splicing of fibronectin--many different proteins but few different functions. Exp Cell Res. 1995, 221: 261-271. 10.1006/excr.1995.1374.
Article
PubMed
CAS
Google Scholar
Peters JH, Hynes RO: Fibronectin isoform distribution in the mouse. I. The alternatively spliced EIIIB, EIIIA, and V segments show widespread codistribution in the developing mouse embryo. Cell Adhes Commun. 1996, 4: 103-125.
Article
PubMed
CAS
Google Scholar
Peters JH, Chen GE, Hynes RO: Fibronectin isoform distribution in the mouse. II. Differential distribution of the alternatively spliced EIIIB, EIIIA, and V segments in the adult mouse. Cell Adhes Commun. 1996, 4: 127-148.
Article
PubMed
CAS
Google Scholar
Mathews GA, ffrench-Constant C: Embryonic fibronectins are up-regulated following peripheral nerve injury in rats. J Neurobiol. 1995, 26: 171-188. 10.1002/neu.480260203.
Article
PubMed
CAS
Google Scholar
Vogelezang MG, Scherer SS, Fawcett JW, ffrench-Constant C: Regulation of fibronectin alternative splicing during peripheral nerve repair. J Neurosci Res. 1999, 56: 323-333. 10.1002/(SICI)1097-4547(19990515)56:4<323::AID-JNR1>3.0.CO;2-6.
Article
PubMed
CAS
Google Scholar
Vogelezang MG, Liu Z, Relvas JB, Raivich G, Scherer SS, ffrench-Constant C: Alpha4 integrin is expressed during peripheral nerve regeneration and enhances neurite outgrowth. J Neurosci. 2001, 21: 6732-6744.
PubMed
CAS
Google Scholar
Chan BM, Kassner PD, Schiro JA, Byers HR, Kupper TS, Hemler ME: Distinct cellular functions mediated by different VLA integrin alpha subunit cytoplasmic domains. Cell. 1992, 68: 1051-1060. 10.1016/0092-8674(92)90077-P.
Article
PubMed
CAS
Google Scholar
Kassner PD, Alon R, Springer TA, Hemler ME: Specialized functional properties of the integrin alpha 4 cytoplasmic domain. Mol Biol Cell. 1995, 6: 661-674.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu S, Thomas SM, Woodside DG, Rose DM, Kiosses WB, Pfaff M, Ginsberg MH: Binding of paxillin to alpha4 integrins modifies integrin-dependent biological responses. Nature. 1999, 402: 676-681. 10.1038/45264.
Article
PubMed
CAS
Google Scholar
Feral CC, Rose DM, Han J, Fox N, Silverman GJ, Kaushansky K, Ginsberg MH: Blocking the alpha 4 integrin-paxillin interaction selectively impairs mononuclear leukocyte recruitment to an inflammatory site. J Clin Invest. 2006, 116: 715-723. 10.1172/JCI26091.
Article
PubMed
CAS
PubMed Central
Google Scholar
Han J, Liu S, Rose DM, Schlaepfer DD, McDonald H, Ginsberg MH: Phosphorylation of the integrin alpha 4 cytoplasmic domain regulates paxillin binding. J Biol Chem. 2001, 276: 40903-40909. 10.1074/jbc.M102665200.
Article
PubMed
CAS
Google Scholar
Goldfinger LE, Han J, Kiosses WB, Howe AK, Ginsberg MH: Spatial restriction of alpha4 integrin phosphorylation regulates lamellipodial stability and alpha4beta1-dependent cell migration. J Cell Biol. 2003, 162: 731-741. 10.1083/jcb.200304031.
Article
PubMed
CAS
PubMed Central
Google Scholar
Han J, Rose DM, Woodside DG, Goldfinger LE, Ginsberg MH: Integrin alpha 4 beta 1-dependent T cell migration requires both phosphorylation and dephosphorylation of the alpha 4 cytoplasmic domain to regulate the reversible binding of paxillin. J Biol Chem. 2003, 278: 34845-34853. 10.1074/jbc.M304691200.
Article
PubMed
CAS
Google Scholar
Liu S, Ginsberg MH: Paxillin binding to a conserved sequence motif in the alpha 4 integrin cytoplasmic domain. J Biol Chem. 2000, 275: 22736-22742. 10.1074/jbc.M000388200.
Article
PubMed
CAS
Google Scholar
Hynes RO: Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992, 69: 11-25. 10.1016/0092-8674(92)90115-S.
Article
PubMed
CAS
Google Scholar
Tomaselli KJ, Hall DE, Flier LA, Gehlsen KR, Turner DC, Carbonetto S, Reichardt LF: A neuronal cell line (PC12) expresses two beta 1-class integrins-alpha 1 beta 1 and alpha 3 beta 1-that recognize different neurite outgrowth-promoting domains in laminin. Neuron. 1990, 5: 651-662. 10.1016/0896-6273(90)90219-6.
Article
PubMed
CAS
Google Scholar
Ivankovic-Dikic I, Gronroos E, Blaukat A, Barth BU, Dikic I: Pyk2 and FAK regulate neurite outgrowth induced by growth factors and integrins. Nat Cell Biol. 2000, 2: 574-581. 10.1038/35023515.
Article
PubMed
CAS
Google Scholar
Petit V, Boyer B, Lentz D, Turner CE, Thiery JP, Valles AM: Phosphorylation of tyrosine residues 31 and 118 on paxillin regulates cell migration through an association with CRK in NBT-II cells. J Cell Biol. 2000, 148: 957-970. 10.1083/jcb.148.5.957.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu S, Kiosses WB, Rose DM, Slepak M, Salgia R, Griffin JD, Turner CE, Schwartz MA, Ginsberg MH: A fragment of paxillin binds the alpha 4 integrin cytoplasmic domain (tail) and selectively inhibits alpha 4-mediated cell migration. J Biol Chem. 2002, 277: 20887-20894. 10.1074/jbc.M110928200.
Article
PubMed
CAS
Google Scholar
Werner A, Willem M, Jones LL, Kreutzberg GW, Mayer U, Raivich G: Impaired axonal regeneration in alpha7 integrin-deficient mice. J Neurosci. 2000, 20: 1822-1830.
PubMed
CAS
Google Scholar
Gardiner NJ, Fernyhough P, Tomlinson DR, Mayer U, von der Mark H, Streuli CH: Alpha7 integrin mediates neurite outgrowth of distinct populations of adult sensory neurons. Mol Cell Neurosci. 2005, 28: 229-240. 10.1016/j.mcn.2004.08.017.
Article
PubMed
CAS
Google Scholar
Young BA, Taooka Y, Liu S, Askins KJ, Yokosaki Y, Thomas SM, Sheppard D: The cytoplasmic domain of the integrin alpha9 subunit requires the adaptor protein paxillin to inhibit cell spreading but promotes cell migration in a paxillin-independent manner. Mol Biol Cell. 2001, 12: 3214-3225.
Article
PubMed
CAS
PubMed Central
Google Scholar
Woo S, Gomez TM: Rac1 and RhoA promote neurite outgrowth through formation and stabilization of growth cone point contacts. J Neurosci. 2006, 26: 1418-1428. 10.1523/JNEUROSCI.4209-05.2006.
Article
PubMed
CAS
Google Scholar
Khan MA, Okumura N, Okada M, Kobayashi S, Nakagawa H: Nerve growth factor stimulates tyrosine phosphorylation of paxillin in PC12h cells. FEBS Lett. 1995, 362: 201-204. 10.1016/0014-5793(95)00250-D.
Article
PubMed
CAS
Google Scholar
Leventhal PS, Feldman EL: Tyrosine phosphorylation and enhanced expression of paxillin during neuronal differentiation in vitro. J Biol Chem. 1996, 271: 5957-5960. 10.1074/jbc.271.11.5957.
Article
PubMed
CAS
Google Scholar
Schaller MD, Parsons JT: pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol Cell Biol. 1995, 15: 2635-2645.
Article
PubMed
CAS
PubMed Central
Google Scholar
Birge RB, Fajardo JE, Reichman C, Shoelson SE, Songyang Z, Cantley LC, Hanafusa H: Identification and characterization of a high-affinity interaction between v-Crk and tyrosine-phosphorylated paxillin in CT10-transformed fibroblasts. Mol Cell Biol. 1993, 13: 4648-4656.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hempstead BL, Birge RB, Fajardo JE, Glassman R, Mahadeo D, Kraemer R, Hanafusa H: Expression of the v-crk oncogene product in PC12 cells results in rapid differentiation by both nerve growth factor- and epidermal growth factor-dependent pathways. Mol Cell Biol. 1994, 14: 1964-1971.
Article
PubMed
CAS
PubMed Central
Google Scholar
Huang C, Borchers CH, Schaller MD, Jacobson K: Phosphorylation of paxillin by p38MAPK is involved in the neurite extension of PC-12 cells. J Cell Biol. 2004, 164: 593-602. 10.1083/jcb.200307081.
Article
PubMed
CAS
PubMed Central
Google Scholar
Turner CE: Paxillin and focal adhesion signalling. Nat Cell Biol. 2000, 2: E231-6. 10.1038/35046659.
Article
PubMed
CAS
Google Scholar
Brown MC, Turner CE: Paxillin: adapting to change. Physiol Rev. 2004, 84: 1315-1339. 10.1152/physrev.00002.2004.
Article
PubMed
CAS
Google Scholar
Park SY, Avraham H, Avraham S: Characterization of the tyrosine kinases RAFTK/Pyk2 and FAK in nerve growth factor-induced neuronal differentiation. J Biol Chem. 2000, 275: 19768-19777. 10.1074/jbc.M909932199.
Article
PubMed
CAS
Google Scholar
Rose DM, Liu S, Woodside DG, Han J, Schlaepfer DD, Ginsberg MH: Paxillin binding to the alpha 4 integrin subunit stimulates LFA-1 (integrin alpha L beta 2)-dependent T cell migration by augmenting the activation of focal adhesion kinase/proline-rich tyrosine kinase-2. J Immunol. 2003, 170: 5912-5918.
Article
PubMed
CAS
Google Scholar
Turner CE, Brown MC, Perrotta JA, Riedy MC, Nikolopoulos SN, McDonald AR, Bagrodia S, Thomas S, Leventhal PS: Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. J Cell Biol. 1999, 145: 851-863. 10.1083/jcb.145.4.851.
Article
PubMed
CAS
PubMed Central
Google Scholar
Daniels RH, Hall PS, Bokoch GM: Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells. Embo J. 1998, 17: 754-764. 10.1093/emboj/17.3.754.
Article
PubMed
CAS
PubMed Central
Google Scholar
West KA, Zhang H, Brown MC, Nikolopoulos SN, Riedy MC, Horwitz AF, Turner CE: The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). J Cell Biol. 2001, 154: 161-176. 10.1083/jcb.200101039.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kraynov VS, Chamberlain C, Bokoch GM, Schwartz MA, Slabaugh S, Hahn KM: Localized Rac activation dynamics visualized in living cells. Science. 2000, 290: 333-337. 10.1126/science.290.5490.333.
Article
PubMed
CAS
Google Scholar
Nishiya N, Kiosses WB, Han J, Ginsberg MH: An alpha4 integrin-paxillin-Arf-GAP complex restricts Rac activation to the leading edge of migrating cells. Nat Cell Biol. 2005, 7: 343-352. 10.1038/ncb1234.
Article
PubMed
CAS
Google Scholar