Ramón y Cajal S: . Degeneration and Regeneration of the Nervous System. London, U.K.: Oxford University Press;. 1928
Google Scholar
David S, Aguayo AJ: Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. Science. 1981, 214: 931-933.
Article
CAS
PubMed
Google Scholar
Berry M, Hall S, Rees L, Carlile J, Wyse JP: Regeneration of axons in the optic nerve of the adult Browman-Wyse (BW) mutant rat. J Neurocytol. 1992, 21: 426-448.
Article
CAS
PubMed
Google Scholar
Carbonetto S, Evans D, Cochard P: Nerve fiber growth in culture on tissue substrata from central and peripheral nervous systems. J Neurosci. 1987, 7: 610-620.
CAS
PubMed
Google Scholar
Caroni P, Schwab ME: Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Biol. 1988, 106: 1281-1288.
Article
CAS
PubMed
Google Scholar
Crutcher KA: Tissue sections from the mature rat brain and spinal cord as substrates for neurite outgrowth in vitro: extensive growth on gray matter but little growth on white matter. Exp Neurol. 1989, 104: 39-54.
Article
CAS
PubMed
Google Scholar
Crutcher KA, Privitera M: Axonal regeneration on mature human brain tissue sections in culture. Ann Neurol. 1989, 26: 580-583.
Article
CAS
PubMed
Google Scholar
Filbin MT: Myelin-associated glycoprotein: a role in myelination and in the inhibition of axonal regeneration?. Curr Opin Neurobiol. 1995, 5: 588-595. 10.1016/0959-4388(95)80063-8.
Article
CAS
PubMed
Google Scholar
McKerracher L, David S, Jackson DL, Kottis V, Dunn RJ, Braun PE: Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron. 1994, 13: 805-811.
Article
CAS
PubMed
Google Scholar
Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT: A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron. 1994, 13: 757-767.
Article
CAS
PubMed
Google Scholar
Niederöst BP, Zimmermann DR, Schwab ME, Bandtlow CE: Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans. J Neurosci. 1999, 19: 8979-8989.
PubMed
Google Scholar
Savio T, Schwab ME: Rat CNS white matter, but not gray matter, is nonpermissive for neuronal cell adhesion and fiber outgrowth. J Neurosci. 1989, 9: 1126-1133.
CAS
PubMed
Google Scholar
Schwab ME, Caroni P: Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J Neurosci. 1988, 8: 2381-2393.
CAS
PubMed
Google Scholar
Schwab ME, Schnell L: Channeling of developing rat corticospinal tract axons by myelin-associated neurite growth inhibitors. J Neurosci. 1991, 11: 709-721.
CAS
PubMed
Google Scholar
Schwab ME, Thoenen H: Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors. J Neurosci. 1985, 5: 2415-2423.
CAS
PubMed
Google Scholar
Schwab ME, Bandtlow CE, Nicholls J: Developmental expression of myelin-associated neurite growth inhibitors correlates with the loss of regeneration after spinal cord lesions in the opposum. Soc Neurosci Abstr. 1993, 19: 283-219.
Google Scholar
Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J: Regeneration of adult axons in white matter tracts of the central nervous system. Nature. 1997, 390: 680-683.
CAS
PubMed
Google Scholar
Davies SJ, Goucher DR, Doller C, Silver J: Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci. 1999, 19: 5810-5822.
CAS
PubMed
Google Scholar
McKeon RJ, Schreiber RC, Rudge JS, Silver J: Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci. 1991, 11: 3398-3411.
CAS
PubMed
Google Scholar
McKeon RJ, Höke A, Silver J: Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol. 1995, 136: 32-43. 10.1006/exnr.1995.1081.
Article
CAS
PubMed
Google Scholar
Snow DM, Lemmon V, Carrino DA, Caplan AI, Silver J: Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp Neurol. 1990, 109: 111-130.
Article
CAS
PubMed
Google Scholar
Pettigrew DB, Crutcher KA: White matter of the CNS supports or inhibits neurite outgrowth in vitro depending on geometry. J Neurosci. 1999, 19: 8358-8366.
CAS
PubMed
Google Scholar
Davies SJ, Field PM, Raisman G: Long fibre growth by axons of embryonic mouse hippocampal neurons microtransplanted into the adult rat fimbria. Eur J Neurosci. 1993, 5: 95-106.
Article
CAS
PubMed
Google Scholar
Davies SJ, Field PM, Raisman G: Long interfascicular axon growth from embryonic neurons transplanted into adult myelinated tracts. J Neurosci. 1994, 14: 1596-1612.
CAS
PubMed
Google Scholar
Humpel C, Bygdeman M, Olson L, Strömberg I: Human fetal neocortical tissue grafted to rat brain cavities survives, leads to reciprocal nerve fiber growth, and accumulates host IgG. J Comp Neurol. 1994, 340: 337-348.
Article
CAS
PubMed
Google Scholar
Lehman MN, Lesauter J, Silver R: Fiber outgrowth from anterior hypothalamic and cortical xenografts in the third ventricle. J Comp Neurol. 1998, 391: 133-145. 10.1002/(SICI)1096-9861(19980202)391:1<133::AID-CNE11>3.0.CO;2-Z.
Article
CAS
PubMed
Google Scholar
Wictorin K, Brundin P, Gustavii B, Lindvall O, Björklund A: Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts. Nature. 1990, 347: 556-558. 10.1038/347556a0.
Article
CAS
PubMed
Google Scholar
Wictorin K, Brundin P, Sauer H, Lindvall O, Björklund A: Long distance directed axonal growth from human dopaminergic mesencephalic neuroblasts implanted along the nigrostriatal pathway in 6-hydroxydopamine lesioned adult rats. J Comp Neurol. 1992, 323: 475-494.
Article
CAS
PubMed
Google Scholar
Fitch MT, Doller C, Combs CK, Landreth GE, Silver J: Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci. 1999, 19: 8182-8198.
CAS
PubMed
Google Scholar
Lemons ML, Howland DR, Anderson DK: Chondroitin sulfate proteoglycan immunoreactivity increases following spinal cord injury and transplantation. Exp Neurol. 1999, 160: 51-65. 10.1006/exnr.1999.7184.
Article
CAS
PubMed
Google Scholar
Zuo J, Neubauer D, Dyess K, Ferguson TA, Muir D: Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp Neurol. 1998, 154: 654-662. 10.1006/exnr.1998.6951.
Article
CAS
PubMed
Google Scholar
Chui SW, Yip HK, So K-F: Neurite outgrowth of embryonic DRG neurons on optic nerve sections are promoted by neurotrophic factors. Soc Neurosci Abstr. 1998, 24: 20-24.
Google Scholar
Carpenter MK, Hassinger TD, Whalen LR, Kater SB: CNS white matter can be altered to support neuronal outgrowth. J Neurosci Res. 1994, 37: 1-14.
Article
CAS
PubMed
Google Scholar
Brewer GJ, Torricelli JR, Evege EK, Price PJ: Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res. 1993, 35: 567-576.
Article
CAS
PubMed
Google Scholar
Pettigrew DB, Crutcher KA: Neurobasal medium promotes greater survival of embryonic chick sympathetic neurons than Ham's F12 medium. Soc Neurosci Abstr. 1996, 22: 299-215.
Google Scholar
Wictorin K, Lagenaur CF, Lund RD, Björklund A: Efferent projections to the host brain from intrastriatal mouse-to-rat grafts: time course and tissue-type specificity as revealed by a mouse specific neuronal marker. Eur J Neurosci. 1991, 3: 86-101.
Article
PubMed
Google Scholar
Watanabe E, Murakami F: Preferential adhesion of chick central neurons to the gray matter of the central nervous system. Neurosci Lett. 1989, 97: 69-74. 10.1016/0304-3940(89)90141-9.
Article
CAS
PubMed
Google Scholar
Watanabe E, Murakami F: Cell attachment to and neurite outgrowth on tissue sections of developing, mature and lesioned brain: the role of inhibitory factor(s) in the CNS white matter. Neurosci Res (N Y). 1990, 8: 83-99. 10.1016/0168-0102(90)90061-I.
Article
CAS
Google Scholar
Anand U, McMahon SB, Cohen J: Preferential growth of neonatal rat dorsal root ganglion cells on homotypic peripheral nerve substrates in vitro. Eur J Neurosci. 1996, 8: 649-657.
Article
CAS
PubMed
Google Scholar
Sandrock AW, Matthew WD: Identification of a peripheral nerve neurite growth-promoting activity by development and use of an in vitro bioassay. Proc Natl Acad Sci U S A. 1987, 84: 6934-6938.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shewan D, Berry M, Bedi K, Cohen J: Embryonic optic nerve tissue fails to support neurite outgrowth by central and peripheral neurons in vitro. Eur J Neurosci. 1993, 5: 809-817.
Article
CAS
PubMed
Google Scholar
Zuo J, Hernandez YJ, Muir D: Chondroitin sulfate proteoglycan with neurite-inhibiting activity is up-regulated following peripheral nerve injury. J Neurobiol. 1998, 34: 41-54. 10.1002/(SICI)1097-4695(199801)34:1<41::AID-NEU4>3.0.CO;2-C.
Article
CAS
PubMed
Google Scholar
David S, Braun PE, Jackson DL, Kottis V, McKerracher L: Laminin overrides the inhibitory effects of peripheral nervous system and central nervous system myelin-derived inhibitors of neurite growth. J Neurosci Res. 1995, 42: 594-602.
Article
CAS
PubMed
Google Scholar
Perry VH, Brown MC: Role of macrophages in peripheral nerve degeneration and repair. Bioessays. 1992, 14: 401-406.
Article
CAS
PubMed
Google Scholar
Brown MC, Lunn ER, Perry VH: Consequences of slow Wallerian degeneration for regenerating motor and sensory axons. J Neurobiol. 1992, 23: 521-536.
Article
CAS
PubMed
Google Scholar
Bignami A, Ralston HJd: The cellular reaction to Wallerian degeneration in the central nervous system of the cat. Brain Res. 1969, 13: 444-461. 10.1016/0006-8993(69)90259-5.
Article
CAS
PubMed
Google Scholar
Daniel PM, Strich SJ: Histological observations on Wallerian degeneration in the spinal cord of the baboon, Papio papio. Acta Neuropathol (Berl). 1969, 12: 314-328.
Article
CAS
Google Scholar
Lampert PW, Cressman MR: Fine-structural changes of myelin sheaths after axonal degeneration in the spinal cord of rats. Am J Pathol. 1966, 49: 1139-1155.
PubMed Central
CAS
PubMed
Google Scholar
Wakefield CL, Eidelberg E: Electron microscopic observations of the delayed effects of spinal cord compression. Exp Neurol. 1975, 48: 637-646.
Article
CAS
PubMed
Google Scholar
Humason GL: Animal Tissue Techniques. San Francisco, CA.: W. H. Freeman and Company;. 1972
Google Scholar