- Poster presentation
- Open Access
An empirical model of Drosophila Photoreceptor-LMC network
- Carlos Luna1 and
- Daniel Coca1Email author
https://doi.org/10.1186/1471-2202-16-S1-P47
© Luna and Coca 2015
- Published: 18 December 2015
Keywords
- Amacrine Cell
- Control Architecture
- Network Circuit
- Photoreceptor Response
- Retinal Circuit
To operate over the full environmental range of light intensities, fly photoreceptors implement various adaptation mechanisms to continuously adjust their sensitivity. In addition, photoreceptor responses in flies are modulated by feedback from two classes of interneuron, large monopolar cells (LMC) and amacrine cells (AC), and axonal gap-junctions, which pool the responses from six photoreceptors. Previous studies have shown that adaptation in the photoreceptor-interneuron synapses helps extend further the operating range of photoreceptors.
In histamine deficient mutants hdcJK910 the lamina interneurons fail to receive and transmit visual information and their feedback synapses can no longer modulate the photoreceptor output. By comparing the 'open-loop' system of mutant flies with the 'closed-loop' system of wild-type flies it is possible to characterize how the network helps enhance the photoreceptor response. We have previously developed a functional nonlinear model of Drosophila's R1-R6 which incorporates separate gains for mean intensity and contrast. By exploiting this control architecture we were able to model the responses of wild type as well as blind mutants using a single model structure and to characterize the contribution from interneurons to boosting the operating ranges of fly photoreceptors.
A. Block diagram of a single photoreceptor-LMC circuit model. B. Experimental recording (black) vs model predicted output (red)
Authors’ Affiliations
Copyright
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.