- Poster presentation
- Open access
- Published:
Functional identification of complex cells from spike times and the decoding of visual stimuli
BMC Neuroscience volume 16, Article number: P300 (2015)
Neural circuits built with complex cells play a key role in modeling the primary visual cortex. The encoding capability of an ensemble of complex cells has not been systematically studied, however. Can visual scenes be reconstructed using the spike times generated by an ensemble of complex cells? Can the processing taking place in complex cells be identified with high accuracy? Processing by complex cells has the complexity of Volterra models [1]. General Volterra based models call, among others, for efficient functional identification and decoding algorithms.
We demonstrate that complex cells exhibit Volterra dendritic stimulus processors (Volterra DSPs) that are analytically and computationally tractable. Decoding and identification problems arising in neural circuits built with complex cells can be efficiently solved as rank minimization problems [2]. We provide (i) an algorithm that reconstructs the visual stimuli based on the spike times generated by circuits with widely employed complex cells models (Complex Cell Time Decoding Machines), and (ii) propose a mechanistic algorithm for functionally identifying the processing in complex cells using the spike times they generate (Complex Cell Channel Identification Machines). These algorithms are based on the key observation that the functional identification of processing in a single complex cell is dual to the problem of decoding stimuli encoded by an ensemble of complex cells.
In addition, we show that the number of spikes needed for perfect reconstruction of a band-limited stimulus is proportional to the dimension of the stimulus space rather than the square of its dimension, thereby reducing the required number of neurons/measurements to a physiologically plausible range. This result demonstrates that visual stimuli can be efficiently reconstructed from the amplitude information carried in the complex cells alone. Similar results obtained for identification establish the computational tractability of higher order Volterra DSPs. We provide examples of perfect reconstruction of space-time stimuli (Figure 1A) and examples of identification of complex cell DSPs (Figure 1B). We demonstrate that our identification algorithms substantially outperform algorithms based on spike-triggered covariance (STC) (Figure 1C). Finally, we evaluate our identification algorithms by reconstructing novel stimuli in the input space using identified Volterra DSPs (Figure 1D) [3].
References
Lazar AA, Slutskiy YB: Spiking neural circuits with dendritic stimulus processors: encoding, decoding, and identification in reproducing kernel Hilbert space. J Comput Neurosci. 2015, 38 (1): 1-24.
Candès EJ, Strohmer T, Voroninski V: PhaseLift: Exact and stable signal recovery from magnitude measurements via convex programming. Comm Pure Appl Math. 2013, 66 (8): 1241-1274.
Lazar AA, Slutskiy YB, Zhou Y: Massively parallel neural circuits for stereoscopic color vision: Encoding, decoding and identification. Neural Networks. 2015, 63: 254-271.
Acknowledgements
The research reported here was supported by AFOSR under grant #FA9550-12-1-0232.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
About this article
Cite this article
Lazar, A.A., Ukani, N.H. & Zhou, Y. Functional identification of complex cells from spike times and the decoding of visual stimuli. BMC Neurosci 16 (Suppl 1), P300 (2015). https://doi.org/10.1186/1471-2202-16-S1-P300
Published:
DOI: https://doi.org/10.1186/1471-2202-16-S1-P300