Skip to main content
  • Poster presentation
  • Open access
  • Published:

Induction and consolidation of calcium-based homo- and heterosynaptic potentiation and depression

Synaptic plasticity serves as the physiological foundation for learning and memory [1]. While homosynaptic plasticity is associative learning or Hebbian-type plasticity, heterosynaptic plasticity reflects the synaptic change without direct stimulation, i.e. non-associative plasticity [2]. However, heterosynaptic plasticity is an important mechanism preventing run-away synaptic dynamics and offers a potential mechanism to understand memory allocation [2, 3]. Experimental results show that the induction of heterosynaptic plasticity as well as homosynaptic plasticity depends on the postsynaptic calcium concentration [4]. We propose that heterosynaptic plasticity can be induced by the postsynaptic calcium dynamics which can be triggered by the back propagation of action potentials.

However, homosynaptic plasticity has an early-phase (< 3 hours) and a late-phase state (> 8 hours) [1]. Experiments show that an early-phase synaptic change can be transferred to a late-phase by the mechanisms of "synaptic tagging and consolidation" (STC) [5, 6]: (i) the changed synapse get tagged and (ii) a strong activation enables in the postsynaptic neuron the synthesis of plasticity-related proteins (PRP) which are transmitted back to the tagged synapse[5, 6]. We propose that the same STC mechanism consolidating homosynaptic changes are also able to consolidate heterosynaptic changes.

We combine a history spiking-dependent neuron [7] with calcium-based synaptic plasticity rule [8] and synaptic consolidation mechanism [9] to understand: (i) the mechanisms of inducing heterosynaptic plasticity by which the inactive synapse can change its weight through the postsynaptic calcium level triggered by the back propagation of the shared neuron; and (ii) of the consolidation of heterosynaptic changes based on the synaptic tagging and consolidation principle. For instance, a strong stimulus transmitted by a group of synapses induces and consolidates by the postsynaptic neuron heterosynaptic changes at other, unrelated synapses. Our study provides a further step of understanding how several mechanisms interact with each other to enable the formation of computational important long-term changes or memories.


  1. Abraham WC: How long will long term potentiation last?. Phil. Trans. R. Soc. Lond. B. 2003, 358: 735-744.

    Article  Google Scholar 

  2. Chistiakova M, Bannon NM, Bazhenov M, Volgushev M : Heterosynaptic plasticity: multiple mechansims and muliple roles. Neuroscientist. 2014, 20 (5): 483-498.

    Article  PubMed  Google Scholar 

  3. Rogerson T, Cai DJ, Frank A, Sano Y, Shobe J, et al: Synaptic tagging during memory allocation. Nat Rev Neurosci. 2014, 15: 157-169.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Malenka RC, Kauer JA, Zucker RS, Nicoll RA: Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science. 1988, 242: 81-84.

    Article  PubMed  CAS  Google Scholar 

  5. Frey U, Morris R GM: Synaptic tagging and long-term potentiation. Nature. 1997, 385: 533-536.

    Article  PubMed  CAS  Google Scholar 

  6. Sajikumar S, Navakkode S, Frey JU: Identification of compartment-and Process-Specific Molecules Required for "Synaptic Tagging" during Long-Term Potentiation and Long-Term Depression in Hippocampal CA1. J Neurosci. 2007, 27 (19): 5068-5080.

    Article  PubMed  CAS  Google Scholar 

  7. Yamauchi S, Kim H and Shinomoto S: Elemental spiking neuron model for reproducing diverse firing patterns and predicting precise firing times. Front in Comput neurosci. 2011, 5 (42): 1-15.

    Google Scholar 

  8. Graupner M, Brunel N: Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate and dendritic location. PNAS. 2012, 109 (10): 3991-3996.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Clopath C, Ziegler L, Vasilaki E, Buesing L, Gerstner W: Tag-Trigger-Consolidation: A Model of Early and Late Long-Term-Potentiation and Depression. PLoS CB. 2008, 4 (12): e1000248-

    Google Scholar 

Download references


This research is funded by from the European Communities Seventh Framework Program FP7/2007-as well as from the Germany Ministry of Science Grant to the Göttingen Bernstein Center for Computational Neuroscience.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Christian Tetzlaff.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Kulvicius, T. & Tetzlaff, C. Induction and consolidation of calcium-based homo- and heterosynaptic potentiation and depression. BMC Neurosci 16 (Suppl 1), P252 (2015).

Download citation

  • Published:

  • DOI: