- Poster presentation
- Open Access
- Published:
Looking at the role of direct and indirect pathways in basal ganglia networks at different levels
BMC Neuroscience volume 16, Article number: P225 (2015)
The role of basal ganglia in motor action initiation and selection has been well studied and now it is evident that impairment in this structure causes not only causes movement disorders as Parkinson's disease, Huntington's disease but also behavioral dysfunctions as addiction, obsessive-compulsive disorder [1–4]. In order to understand the mechanisms giving rise to motor actions, cognitive processes related to these actions as decision making and the diseases occurring due to malfunctioning of these structures, various computational models of direct and indirect pathways have been proposed [5–9]. Here, in order to set a simple relation between models of basal ganglia at different levels, a simple mass model indicating the controversial role of direct and indirect pathways will be introduced first. While dopamine (DA) in direct pathway enhances the activity in Thalamus giving rise to inhibition of action, arise of DA in indirect pathway disinhibits Thalamus activity promoting the action to take place. This activity can be followed from Figure 1 for different DA levels. Based on the results of this simple mass model, spiking neural network (SNN) is built by point neurons and the relation between the local field potential of this SNN and simple mass model will be discussed. The aim is to build a simple relation between different levels of computational models which would help investigating the mechanisms behind the cognitive processes without engaging in detailed models initially. Thus, the simple mass model proposed would be primary model giving a chance to test the initial interpretation of the concepts formed and lead to setting up more detailed, realistic models.
References
Kropotov J, Etlinger S: Selection of actions in the basal ganglia-thalamacortical circuits: Review and model. International Journal of Psychophysiology. 1999, 31 (3): 197-217.
DeLong MR, Wichmann T: Circuits and circuit disorders of the basal ganglia. Archives of Neurology. 2007, 64 (1): 20-24.
Nicola S: The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology. 2007, 191 (3): 521-550.
Graybiel AM, Rauch SL: Toward a Neurobiology of Obsessive-Compulsive Disorder. Neuron. 2000, 28 (2): 343-347.
Terman D, Rubin JE, Yew AC, Wilson CJ: Activity patterns in a model for the subthalamopallidal network of the basal ganglia. The Journal of Neuroscience. 2002, 22 (7): 2963-2976.
Chersi F, Mirolli M, Pezzulo G, Baldassarre G: A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning. Neural Networks. 2013, 41: 212-224.
McCarthy MM, Moore-Kochlacs C, Gu X, Boyden ES, Han X, Kopell N: Striatal origin of the pathologic beta oscillations in Parkinson's disease. Proceedings of the National Academy of Sciences. 2011, 108 (28): 11620-11625.
Marreiros AC, Cagnan H, Moran RJ, Friston KJ, Brown P: Basal ganglia cortical interactions in Parkinsonian patients. NeuroImage. 2013, 66: 301-310.
Yucelgen C, Denizdurduran B, Metin S, Elibol R, Sengor NS: A biophysical network model displaying the role of basal ganglia pathways in action selection. Artificial Neural Networks and Machine Learning ICANN. 2012, 7552: 177-184.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
About this article
Cite this article
Elibol, R., Şengör, N.S. Looking at the role of direct and indirect pathways in basal ganglia networks at different levels. BMC Neurosci 16 (Suppl 1), P225 (2015). https://doi.org/10.1186/1471-2202-16-S1-P225
Published:
DOI: https://doi.org/10.1186/1471-2202-16-S1-P225
Keywords
- Dopamine
- Basal Ganglion
- Computational Model
- Motor Action
- Simple Relation