Skip to main content
  • Poster presentation
  • Open access
  • Published:

Looking at the role of direct and indirect pathways in basal ganglia networks at different levels

The role of basal ganglia in motor action initiation and selection has been well studied and now it is evident that impairment in this structure causes not only causes movement disorders as Parkinson's disease, Huntington's disease but also behavioral dysfunctions as addiction, obsessive-compulsive disorder [14]. In order to understand the mechanisms giving rise to motor actions, cognitive processes related to these actions as decision making and the diseases occurring due to malfunctioning of these structures, various computational models of direct and indirect pathways have been proposed [59]. Here, in order to set a simple relation between models of basal ganglia at different levels, a simple mass model indicating the controversial role of direct and indirect pathways will be introduced first. While dopamine (DA) in direct pathway enhances the activity in Thalamus giving rise to inhibition of action, arise of DA in indirect pathway disinhibits Thalamus activity promoting the action to take place. This activity can be followed from Figure 1 for different DA levels. Based on the results of this simple mass model, spiking neural network (SNN) is built by point neurons and the relation between the local field potential of this SNN and simple mass model will be discussed. The aim is to build a simple relation between different levels of computational models which would help investigating the mechanisms behind the cognitive processes without engaging in detailed models initially. Thus, the simple mass model proposed would be primary model giving a chance to test the initial interpretation of the concepts formed and lead to setting up more detailed, realistic models.

Figure 1
figure 1

DA level is normal, high and low at top, middle and bottom, respectively. THL activity is normal, high and low similar to STRD1 activity and contrary to STRD2 activity.


  1. Kropotov J, Etlinger S: Selection of actions in the basal ganglia-thalamacortical circuits: Review and model. International Journal of Psychophysiology. 1999, 31 (3): 197-217.

    Article  PubMed  CAS  Google Scholar 

  2. DeLong MR, Wichmann T: Circuits and circuit disorders of the basal ganglia. Archives of Neurology. 2007, 64 (1): 20-24.

    Article  PubMed  Google Scholar 

  3. Nicola S: The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology. 2007, 191 (3): 521-550.

    Article  PubMed  CAS  Google Scholar 

  4. Graybiel AM, Rauch SL: Toward a Neurobiology of Obsessive-Compulsive Disorder. Neuron. 2000, 28 (2): 343-347.

    Article  PubMed  CAS  Google Scholar 

  5. Terman D, Rubin JE, Yew AC, Wilson CJ: Activity patterns in a model for the subthalamopallidal network of the basal ganglia. The Journal of Neuroscience. 2002, 22 (7): 2963-2976.

    PubMed  CAS  Google Scholar 

  6. Chersi F, Mirolli M, Pezzulo G, Baldassarre G: A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning. Neural Networks. 2013, 41: 212-224.

    Article  PubMed  Google Scholar 

  7. McCarthy MM, Moore-Kochlacs C, Gu X, Boyden ES, Han X, Kopell N: Striatal origin of the pathologic beta oscillations in Parkinson's disease. Proceedings of the National Academy of Sciences. 2011, 108 (28): 11620-11625.

    Article  CAS  Google Scholar 

  8. Marreiros AC, Cagnan H, Moran RJ, Friston KJ, Brown P: Basal ganglia cortical interactions in Parkinsonian patients. NeuroImage. 2013, 66: 301-310.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yucelgen C, Denizdurduran B, Metin S, Elibol R, Sengor NS: A biophysical network model displaying the role of basal ganglia pathways in action selection. Artificial Neural Networks and Machine Learning ICANN. 2012, 7552: 177-184.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rahmi Elibol.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elibol, R., Şengör, N.S. Looking at the role of direct and indirect pathways in basal ganglia networks at different levels. BMC Neurosci 16 (Suppl 1), P225 (2015).

Download citation

  • Published:

  • DOI: