Skip to main content
  • Poster presentation
  • Open access
  • Published:

SPIKE-Synchronization: a parameter-free and time-resolved coincidence detector with an intuitive multivariate extension

Techniques for recording large-scale neuronal spiking activity are developing very fast. This leads to an increasing demand for algorithms capable of analyzing large amounts of experimental spike train data. One of the most crucial and demanding tasks is the identification of similarity patterns with high temporal resolution and across different spatial scales. To address this task, in recent years three time-resolved measures of spike train synchrony have been proposed, event synchronization [1], the ISI-distance [2], and the SPIKE-distance [3].

Here we present SPIKE-synchronization [4], an improved and simplified extension of event synchronization with a more intuitive interpretation which holds for both the bivariate and the multivariate case. SPIKE-synchronization quantifies the degree of synchrony from the relative number of quasi-simultaneous appearances of spikes. Since it builds on the same bivariate and adaptive coincidence detection that was used for event synchronization, SPIKE-synchronization is parameter- and scale-free as well. This makes it easy to handle and allows for an objective estimation of neuronal synchronization. In contrast to the ISI- and the SPIKE-distance, SPIKE-synchronization is a measure of similarity. It is zero if and only if the spike trains do not contain any coincidences, and reaches one if and only if each spike in every spike train has one matching spike in all the other spike trains.

We investigate the properties of SPIKE-synchronization and compare it against other time-resolved measures such as the Peri-Stimulus Time Histogram (PSTH) and the ISI- and the SPIKE-distance [4, 5]. We use simulated data to verify its usefulness and explore its performance on real data.

Together with the ISI-distance and the SPIKE-distance, SPIKE-Synchronization is implemented in both the Matlab-based graphical user interface SPIKY and the Python library PySpike [6]. Both packages provide ample documentation as well as platforms for user feedback. SPIKY even comes with an interactive Facebook-page and a Youtube-channel which includes movies demonstrating both the measures and the GUI.


  1. Quian Quiroga R, Kreuz T, Grassberger P: Event Synchronization: A simple and fast method to measure synchronicity and time delay patterns. Phys Rev E. 2002, 66: , 041904-

    Google Scholar 

  2. Kreuz T, Haas JS, Morelli A, Abarbanel HDI, Politi A: Measuring spike train synchrony. J Neurosci Methods. 2007, 165: , 151-161.

    Article  PubMed  Google Scholar 

  3. Kreuz T, Chicharro D, Houghton C, Andrzejak RG, Mormann F: Monitoring spike train synchrony. J Neurophysiol. 2013, 109: 1457-

    Article  PubMed  Google Scholar 

  4. Kreuz T, Mulansky M, Bozanic N: SPIKY: A graphical user interface for monitoring spike train. Arxiv. 2015, 1410.6910v2 (Submitted to JNeurophysiol)

    Google Scholar 

  5. Mulansky M, Bozanic N, Sburlea A, Kreuz T: A guide to time-resolved and parameter-free measures of spike train synchrony. Arxiv. 2015, 1502.02027 (Submitted to IEEE)

    Google Scholar 

  6. Source codes of SPIKY and PySpike are available at and, respectively

Download references


We acknowledge funding support from the European Commission through Marie Curie Initial Training Network 'Neural Engineering Transformative Technologies (NETT)', project 289146 and through the European Joint Doctorate 'Complex oscillatory systems: Modeling and Analysis (COSMOS)', project 642563 (TK).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Thomas Kreuz.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreuz, T., Bozanic, N. & Mulansky, M. SPIKE-Synchronization: a parameter-free and time-resolved coincidence detector with an intuitive multivariate extension. BMC Neurosci 16 (Suppl 1), P170 (2015).

Download citation

  • Published:

  • DOI: