Skip to main content
  • Poster presentation
  • Open access
  • Published:

How slow K+ currents impact on spike generation mechanism?

Neuronal adaptation is the change in the responsiveness of a neuron over time, and may improve coding information from an environment. Adaptation originates from various factors, including single neurons, synapses, and network dynamics. Here we investigate adaptation in a responsiveness of a neuron. When a neuron received prolonged stimulation, it initially responds with a high firing rate, and the firing rate decrease. This is called spike-frequency adaptation, which is observed in most pyramidal neurons in various animals. Spike-frequency adaptation is usually accounted for by slow K+ currents, for example, the M-type K+ current (IM) and the Ca2+-activated K+ current (IAHP), and the conductance-based (Hodgkin−Huxley type) models including the slow K+ currents have succeeded to reproduce the electro-physiological properties of a neuron [1].

The detailed biophysical mechanism underlying spike-frequency adaptation may impact on the coding property of a neuron [2, 3]. For example, it was suggested that IM facilitates the spike-timing coding, whereas IAHP improves the spike rate-coding [2] and IM increases the response to low-frequency input signals, whereas IAHP decreases the response to low-frequency signals [3].

Due to the complexity of the conductance-based models, it is not clear how the slow K+ currents impact on spike generation mechanism, more specifically, how the parameters of the slow K+ currents regulate spike generation. For understanding the impact of slow K+ currents, we have developed a framework to reduce a detailed conductance-based model with slow K+ currents to an adaptive threshold model [4]. We have deduced a formula that links the slow K+ parameters to the parameters of the reduced model. The formula was validated with the simulation of the detailed model. This formula clarifies how IM and IAHP impact on spike generation mechanism differently and the parameters of IM and IAHP influence spike generation.


  1. Koch C: Biophysics of Computation Oxford, Oxford University Press. 1999

    Google Scholar 

  2. Prescott SA, Sejnowski TJ: Spike-rate coding and spike-time coding are affected oppositely by different adaptation mechanisms. J Neurosci. 2008, 28: 13649-13661.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Deemyad T, Kroeger J, Chacron MJ: Sub- and suprathreshold adaptation currents have opposite effects on frequency tuning. J Physiol. 2012, 590: 4839-4858.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Kobayashi R, Tsubo Y, Shinomoto S: Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front Comput Neurosci. 2009, 3: 9-

    Article  PubMed  PubMed Central  Google Scholar 

Download references


This study was supported by JSPS KAKENHI Grant Number 24500372, 25870915, 25115728. We thank Shigeru Shinomoto and Romain Brette for stimulating discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ryota Kobayashi.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, R., Kitano, K. How slow K+ currents impact on spike generation mechanism?. BMC Neurosci 16 (Suppl 1), P125 (2015).

Download citation

  • Published:

  • DOI: