- Poster presentation
- Open access
- Published:
Decision-making in a population of spiking neurons shaped by dynamics of intrinsic noise
BMC Neuroscience volume 15, Article number: P27 (2014)
Decision-making is a cognitive process involving a choice between multiple alternatives. In recent years, there has been a lot of progress about understanding the way decisions are carried out in the brain. Neurons accumulate both evidence and noise over time, by a summation of spikes, in favor of a specific choice. It remains unclear, however, what are the noise sources involved in brain processing during cognitive tasks. Theoretical models often use an external noisy term added to the network to create trial-to-trial variability by adding random fluctuating inputs to the membrane potential of neurons [1]. Here, we propose an alternative method of information processing by investigating the influence of intrinsic noise generated through the complex interactions between cells in a model of spiking neurons performing a decision-making task. A paradigm termed the random dot motion task [2], used in many perceptual tasks, was incorporated in the artificial neural network to measure the model’s performance with two- or four-choice alternatives. In this task, dots presented on a visual display move in a specific direction and an added percentage of dots are moving randomly. The network must discriminate among the net movement of dots. Figure 1A-B illustrates the speed/accuracy trade-off of the modeled network using an internal noise source when presented with a dot motion of different motion strength values (varying degree of difficulty according to the ratio of moving dots). The model was exquisitely sensitive to small changes in initial conditions, and the addition of a single post-synaptic spike was able to bias the network’s decision in a systematic and predictable fashion. Figure 1C shows that a decision can be altered when the network is presented with a single additional spike in favor of the opposite choice, especially at low motion strength values. In sum, results of the model capture experimental findings on the electrophysiology of decision-making and suggest a key role of intrinsic noise on cognitive processing.
References
Faisal AA, Selen LPJ, Wolpert DM: Noise in the nervous system. Nat Rev Neurosci. 2008, 9 (4): 292-303. 10.1038/nrn2258.
Shadlen MN, Newsome WT: Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol. 2001, 86 (4): 1916-1936.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
About this article
Cite this article
Richardson, L., Thivierge, JP. Decision-making in a population of spiking neurons shaped by dynamics of intrinsic noise. BMC Neurosci 15 (Suppl 1), P27 (2014). https://doi.org/10.1186/1471-2202-15-S1-P27
Published:
DOI: https://doi.org/10.1186/1471-2202-15-S1-P27