Lalande M, Calciano MA: Molecular epigenetics of Angelman syndrome. Cell Mol Life Sci. 2007, 64 (7–8): 947-960.
Article
CAS
PubMed
Google Scholar
Chamberlain SJ, Lalande M: Angelman syndrome, a genomic imprinting disorder of the brain. J Neurosci. 2010, 30 (30): 9958-9963.
Article
CAS
PubMed
Google Scholar
Kishino T, Lalande M, Wagstaff J: UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet. 1997, 15 (1): 70-73.
Article
CAS
PubMed
Google Scholar
Chamberlain SJ, Lalande M: Neurodevelopmental disorders involving genomic imprinting at human chromosome 15q11-q13. Neurobiol Dis. 2010, 39 (1): 13-20.
Article
CAS
PubMed
Google Scholar
Jamieson AC, Miller JC, Pabo CO: Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov. 2003, 2 (5): 361-368.
Article
CAS
PubMed
Google Scholar
Eisenstein M: Sangamo’s lead zinc-finger therapy flops in diabetic neuropathy. Nat Biotechnol. 2012, 30 (2): 121-123.
Article
CAS
PubMed
Google Scholar
Albrecht U, Sutcliffe JS, Cattanach BM, Beechey CV, Armstrong D, Eichele G, Beaudet AL: Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat Genet. 1997, 17 (1): 75-78.
Article
CAS
PubMed
Google Scholar
Rougeulle C, Glatt H, Lalande M: The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat Genet. 1997, 17 (1): 14-15.
Article
CAS
PubMed
Google Scholar
El Hokayem J, Nawaz Z: E6AP in the brain: one protein, dual function, multiple diseases. Mol Neurobiol. 2014, 49 (2): 827-839.
Article
CAS
PubMed
Google Scholar
Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM, Flavell SW, Kim TK, Griffith EC, Waldon Z, Maehr R, Ploegh HL, Chowdhury S, Worley PF, Steen J, Greenberg ME: The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating Arc. Cell. 2010, 140 (5): 704-716.
Article
PubMed Central
CAS
PubMed
Google Scholar
Margolis SS, Salogiannis J, Lipton DM, Mandel-Brehm C, Wills ZP, Mardinly AR, Hu L, Greer PL, Bikoff JB, Ho HY, Soskis MJ, Sahin M, Greenberg ME: EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell. 2010, 143 (3): 442-455.
Article
PubMed Central
CAS
PubMed
Google Scholar
Baudry M, Kramar E, Xu X, Zadran H, Moreno S, Lynch G, Gall C, Bi X: Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome. Neurobiol Dis. 2012, 47 (2): 210-215.
Article
PubMed Central
CAS
PubMed
Google Scholar
van Woerden GM, Harris KD, Hojjati MR, Gustin RM, Qiu S, de Avila FR, Jiang YH, Elgersma Y, Weeber EJ: Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat Neurosci. 2007, 10 (3): 280-282.
Article
CAS
PubMed
Google Scholar
Bayer KU, Lohler J, Schulman H, Harbers K: Developmental expression of the CaM kinase II isoforms: ubiquitous gamma- and delta-CaM kinase II are the early isoforms and most abundant in the developing nervous system. Brain Res Mol Brain Res. 1999, 70 (1): 147-154.
Article
CAS
PubMed
Google Scholar
Karls U, Muller U, Gilbert DJ, Copeland NG, Jenkins NA, Harbers K: Structure, expression, and chromosome location of the gene for the beta subunit of brain-specific Ca2+/calmodulin-dependent protein kinase II identified by transgene integration in an embryonic lethal mouse mutant. Mol Cell Biol. 1992, 12 (8): 3644-3652.
Article
PubMed Central
CAS
PubMed
Google Scholar
Young LS, Searle PF, Onion D, Mautner V: Viral gene therapy strategies: from basic science to clinical application. J Pathol. 2006, 208 (2): 299-318.
Article
CAS
PubMed
Google Scholar
Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, Sweatt JD, Beaudet AL: Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron. 1998, 21 (4): 799-811.
Article
CAS
PubMed
Google Scholar
Daily JL, Nash K, Jinwal U, Golde T, Rogers J, Peters MM, Burdine RD, Dickey C, Banko JL, Weeber EJ: Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome. PLoS One. 2011, 6 (12): e27221.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yamamoto Y, Huibregtse JM, Howley PM: The human E6-AP gene (UBE3A) encodes three potential protein isoforms generated by differential splicing. Genomics. 1997, 41 (2): 263-266.
Article
CAS
PubMed
Google Scholar
Dindot SV, Antalffy BA, Bhattacharjee MB, Beaudet AL: The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet. 2008, 17 (1): 111-118.
Article
CAS
PubMed
Google Scholar
Chamberlain SJ: RNAs of the human chromosome 15q11-q13 imprinted region. Wiley Interdisc Rev RNA. 2013, 4 (2): 155-166.
Article
CAS
Google Scholar
Meng L, Person RE, Huang W, Zhu PJ, Costa-Mattioli M, Beaudet AL: Truncation of Ube3a-ATS unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model. PLoS Genet. 2013, 9 (12): e1004039.
Article
PubMed Central
PubMed
Google Scholar
Meng L, Person RE, Beaudet AL: Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a. Hum Mol Genet. 2012, 21 (13): 3001-3012.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huang HS, Allen JA, Mabb AM, King IF, Miriyala J, Taylor-Blake B, Sciaky N, Dutton JW, Lee HM, Chen X, Jin J, Bridges AS, Zylka MJ, Roth BL, Philpot BD: Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature. 2012, 481 (7380): 185-189.
Article
CAS
Google Scholar
King IF, Yandava CN, Mabb AM, Hsiao JS, Huang HS, Pearson BL, Calabrese JM, Starmer J, Parker JS, Magnuson T, Chamberlain SJ, Philpot BD, Zylka MJ: Topoisomerases facilitate transcription of long genes linked to autism. Nature. 2013, 501 (7465): 58-62.
Article
PubMed Central
CAS
PubMed
Google Scholar
Powell WT, Coulson RL, Gonzales ML, Crary FK, Wong SS, Adams S, Ach RA, Tsang P, Yamada NA, Yasui DH, Chedin F, LaSalle JM: R-loop formation at Snord116 mediates topotecan inhibition of Ube3a-antisense and allele-specific chromatin decondensation. Proc Natl Acad Sci U S A. 2013, 110 (34): 13938-13943.
Article
PubMed Central
CAS
PubMed
Google Scholar
Szyf M: Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol. 2009, 49: 243-263.
Article
CAS
PubMed
Google Scholar
Cearley CN, Wolfe JH: A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J Neurosci. 2007, 27 (37): 9928-9940.
Article
CAS
PubMed
Google Scholar
Gustin RM, Bichell TJ, Bubser M, Daily J, Filonova I, Mrelashvili D, Deutch AY, Colbran RJ, Weeber EJ, Haas KF: Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome. Neurobiol Dis. 2010, 39 (3): 283-291.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cearley CN, Vandenberghe LH, Parente MK, Carnish ER, Wilson JM, Wolfe JH: Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. Mol Ther. 2008, 16 (10): 1710-1718.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mingozzi F, High KA: Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013, 122 (1): 23-36.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cearley CN, Wolfe JH: Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther. 2006, 13 (3): 528-537.
Article
CAS
PubMed
Google Scholar
Tremblay JP, Xiao X, Aartsma-Rus A, Barbas C, Blau HM, Bogdanove AJ, Boycott K, Braun S, Breakefield XO, Bueren JA, Buschmann M, Byrne BJ, Calos M, Cathomen T, Chamberlain J, Chuah M, Cornetta K, Davies KE, Dickson JG, Duchateau P, Flotte TR, Gaudet D, Gersbach CA, Gilbert R, Glorioso J, Herzog RW, High KA, Huang W, Huard J, Joung JK, et al: Translating the genomics revolution: the need for an international gene therapy consortium for monogenic diseases. Mol Ther. 2013, 21 (2): 266-268.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J: Gene therapy clinical trials worldwide to 2012 - an update. J Gene Med. 2013, 15 (2): 65-77.
Article
CAS
PubMed
Google Scholar
Blancafort P, Beltran AS: Rational design, selection and specificity of Artificial Transcription Factors (ATFs): the influence of chromatin in target gene regulation. Comb Chem High Throughput Screen. 2008, 11 (2): 146-158.
Article
CAS
PubMed
Google Scholar
Sera T: Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev. 2009, 61 (7–8): 513-526.
Article
CAS
PubMed
Google Scholar
Segal DJ, Meckler JF: Genome engineering at the dawn of the golden age. Annu Rev Genomics Hum Genet. 2013, 14: 135-158.
Article
CAS
PubMed
Google Scholar
Sander JD, Joung JK: CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014, 32 (4): 347-355.
Article
PubMed Central
CAS
PubMed
Google Scholar
Beerli RR, Segal DJ, Dreier B, Barbas CF: Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci U S A. 1998, 95 (25): 14628-14633.
Article
PubMed Central
CAS
PubMed
Google Scholar
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U: Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009, 326 (5959): 1509-1512.
Article
CAS
PubMed
Google Scholar
Moscou MJ, Bogdanove AJ: A simple cipher governs DNA recognition by TAL effectors. Science. 2009, 326 (5959): 1501.
Article
CAS
PubMed
Google Scholar
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013, 154 (2): 442-451.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cruvinel E, Budinetz T, Germain N, Chamberlain S, Lalande M, Martins-Taylor K: Reactivation of Maternal SNORD116 Cluster via SETDB1 knockdown in Prader-Willi Syndrome iPSCs. Hum Mol Genet. 2014, doi:10.1093/hmg/ddu1187
Google Scholar
Scoles HA, Urraca N, Chadwick SW, Reiter LT, Lasalle JM: Increased copy number for methylated maternal 15q duplications leads to changes in gene and protein expression in human cortical samples. Mol Autism. 2011, 2 (1): 19.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sweatt JD: Pitt-Hopkins Syndrome: intellectual disability due to loss of TCF4-regulated gene transcription. Exp Mol Med. 2013, 45: e21.
Article
PubMed Central
PubMed
Google Scholar
Ricceri L, De Filippis B, Laviola G: Rett syndrome treatment in mouse models: searching for effective targets and strategies. Neuropharmacology. 2013, 68: 106-115.
Article
CAS
PubMed
Google Scholar
Wolfe SA, Nekludova L, Pabo CO: DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct. 2000, 29: 183-212.
Article
CAS
PubMed
Google Scholar
Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JR, Joung JK: Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods. 2011, 8 (1): 67-69.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bhakta MS, Segal DJ: The generation of zinc finger proteins by modular assembly. Methods Mol Biol. 2010, 649: 3-30.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bae KH, Kwon YD, Shin HC, Hwang MS, Ryu EH, Park KS, Yang HY, Lee DK, Lee Y, Park J, Kwon HS, Kim HW, Yeh BI, Lee HW, Sohn SH, Yoon J, Seol W, Kim JS: Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat Biotechnol. 2003, 21 (3): 275-280.
Article
CAS
PubMed
Google Scholar
Gonzalez B, Schwimmer LJ, Fuller RP, Ye Y, Asawapornmongkol L, Barbas CF: Modular system for the construction of zinc-finger libraries and proteins. Nat Protoc. 2010, 5 (4): 791-810.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012, 337 (6096): 816-821.
Article
CAS
PubMed
Google Scholar
Consortium EP, Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M: An integrated encyclopedia of DNA elements in the human genome. Nature. 2012, 489 (7414): 57-74.
Article
Google Scholar
Zykovich A, Korf I, Segal DJ: Bind-n-Seq: high-throughput analysis of in vitro protein-DNA interactions using massively parallel sequencing. Nucleic Acids Res. 2009, 37 (22): e151.
Article
PubMed Central
PubMed
Google Scholar
McNamara AR, Hurd PJ, Smith AE, Ford KG: Characterisation of site-biased DNA methyltransferases: specificity, affinity and subsite relationships. Nucleic Acids Res. 2002, 30 (17): 3818-3830.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang L, Spratt SK, Liu Q, Johnstone B, Qi H, Raschke EE, Jamieson AC, Rebar EJ, Wolffe AP, Case CC: Synthetic zinc finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. J Biol Chem. 2000, 275 (43): 33850-33860.
Article
CAS
PubMed
Google Scholar
O’Geen H, Frietze S, Farnham PJ: Using ChIP-seq technology to identify targets of zinc finger transcription factors. Methods Mol Biol. 2010, 649: 437-455.
Article
PubMed Central
PubMed
Google Scholar
Tan S, Guschin D, Davalos A, Lee YL, Snowden AW, Jouvenot Y, Zhang HS, Howes K, McNamara AR, Lai A, Ullman C, Reynolds L, Moore M, Isalan M, Berg LP, Campos B, Qi H, Spratt SK, Case CC, Pabo CO, Campisi J, Gregory PD: Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc Natl Acad Sci U S A. 2003, 100 (21): 11997-12002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Miller J, McLachlan AD, Klug A: Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 1985, 4 (6): 1609-1614.
PubMed Central
CAS
PubMed
Google Scholar
Mae M, Langel U: Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr Opin Pharmacol. 2006, 6 (5): 509-514.
Article
PubMed
Google Scholar