White AM, Swartzwelder HS: Hippocampal function during adolescence: a unique target of ethanol effects. Ann N Y Acad Sci. 2004, 1021: 206-220. 10.1196/annals.1308.026.
Article
CAS
PubMed
Google Scholar
Spear LP, Varlinskaya EI: Adolescence. Alcohol sensitivity, tolerance, and intake. Recent DevAlcohol. 2005, 17: 143-159.
Google Scholar
Yamaguchi K, Kandel DB: Patterns of drug use from adolescence to young adulthood: III. Predictors of progression. Am J Public Health. 1984, 74 (7): 673-681. 10.2105/AJPH.74.7.673.
Article
PubMed Central
CAS
PubMed
Google Scholar
Robins LN, Przybeck TR: Age of onset of drug use as a factor in drug and other disorders. NIDA Res Monogr. 1985, 56: 178-192.
CAS
PubMed
Google Scholar
Deykin EY, Levy JC, Wells V: Adolescent depression, alcohol and drug abuse. Am J Public Health. 1987, 77 (2): 178-182. 10.2105/AJPH.77.2.178.
Article
PubMed Central
CAS
PubMed
Google Scholar
Grant BF, Dawson DA: Age at onset of alcohol use and its association with DSM-IV alcohol abuse and dependence: results from the National Longitudinal Alcohol Epidemiologic Survey. J Subst Abuse. 1997, 9: 103-110.
Article
CAS
PubMed
Google Scholar
Hawkins JD, Graham JW, Maguin E, Abbott R, Hill KG, Catalano RF: Exploring the effects of age of alcohol use initiation and psychosocial risk factors on subsequent alcohol misuse. J Stud Alcohol. 1997, 58 (3): 280-290.
Article
PubMed Central
CAS
PubMed
Google Scholar
Oscar-Berman M, Marinkovic K: Alcohol: effects on neurobehavioral functions and the brain. Neuropsychol Rev. 2007, 17 (3): 239-257. 10.1007/s11065-007-9038-6.
Article
PubMed Central
PubMed
Google Scholar
Lebel C, Roussotte F, Sowell ER: Imaging the impact of prenatal alcohol exposure on the structure of the developing human brain. Neuropsychol Rev. 2011, 21 (2): 102-118. 10.1007/s11065-011-9163-0.
Article
PubMed Central
PubMed
Google Scholar
Zahr NM, Kaufman KL, Harper CG: Clinical and pathological features of alcohol-related brain damage. Nat Rev Neurol. 2011, 7 (5): 284-294. 10.1038/nrneurol.2011.42.
Article
CAS
PubMed
Google Scholar
Schulte T, Oberlin BG, Kareken DA, Marinkovic K, Muller-Oehring EM, Meyerhoff DJ, Tapert S: How acute and chronic alcohol consumption affects brain networks: insights from multimodal neuroimaging. Alcohol Clin Exp Res. 2012, 36 (12): 2017-2027. 10.1111/j.1530-0277.2012.01831.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gao B, Bataller R: Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 2011, 141 (5): 1572-1585. 10.1053/j.gastro.2011.09.002.
Article
PubMed Central
CAS
PubMed
Google Scholar
George A, Figueredo VM: Alcoholic cardiomyopathy: a review. J Card Fail. 2011, 17 (10): 844-849. 10.1016/j.cardfail.2011.05.008.
Article
PubMed
Google Scholar
Giacosa A, Adam-Blondon AF, Baer-Sinnott S, Barale R, Bavaresco L, Di Gaspero G, Dugo L, Ellison RC, Gerbi V, Gifford D, Janssens J, La Vecchia C, Negri E, Pezzotti M, Santi L, Rondanelli M: Alcohol and wine in relation to cancer and other diseases. Eur J Cancer Prev. 2012, 21 (1): 103-108. 10.1097/CEJ.0b013e32834761d3.
Article
CAS
PubMed
Google Scholar
Vilpoux C, Warnault V, Pierrefiche O, Daoust M, Naassila M: Ethanol-sensitive brain regions in rat and mouse: a cartographic review, using immediate early gene expression. Alcohol Clin Exp Res. 2009, 33 (6): 945-969. 10.1111/j.1530-0277.2009.00916.x.
Article
CAS
PubMed
Google Scholar
Anand BK, Brobeck JR: Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med. 1951, 77: 323-324. 10.3181/00379727-77-18766.
Article
CAS
PubMed
Google Scholar
Hetherington AW, Ranson SW: Hypothalamic lesions and adiposity in the rat. Anat Rec. 1940, 78 (2): 149-172. 10.1002/ar.1090780203.
Article
Google Scholar
Barson JR, Morganstern I, Leibowitz SF: Similarities in hypothalamic and mesocorticolimbic circuits regulating the overconsumption of food and alcohol. Physiol Behav. 2011, 104 (1): 128-137. 10.1016/j.physbeh.2011.04.054.
Article
PubMed Central
CAS
PubMed
Google Scholar
DiLeone RJ, Georgescu D, Nestler EJ: Lateral hypothalamic neuropeptides in reward and drug addiction. Life Sci. 2003, 73 (6): 759-768. 10.1016/S0024-3205(03)00408-9.
Article
CAS
PubMed
Google Scholar
Harris GC, Wimmer M, Aston-Jones G: A role for lateral hypothalamic orexin neurons in reward seeking. Nature. 2005, 437 (7058): 556-559. 10.1038/nature04071.
Article
CAS
PubMed
Google Scholar
Marchant NJ, Millan EZ, McNally GP: The hypothalamus and the neurobiology of drug seeking. Cell Mol Life Sci. 2012, 69 (4): 581-597. 10.1007/s00018-011-0817-0.
Article
CAS
PubMed
Google Scholar
Wayner MJ, Greenberg I, Carey RJ, Nolley D: Ethanol drinking elicited during electrical stimulation of the lateral hypothalamus. Physiol Behav. 1971, 7 (5): 793-795. 10.1016/0031-9384(71)90152-1.
Article
CAS
PubMed
Google Scholar
Amit Z, Meade RG, Corcoran ME: The lateral hypothalamus, catecholamines and ethanol self-administration in rats. Adv Exp Med Biol. 1975, 59: 311-321. 10.1007/978-1-4757-0632-1_22.
Article
CAS
PubMed
Google Scholar
Leibowitz SF: Overconsumption of dietary fat and alcohol: mechanisms involving lipids and hypothalamic peptides. Physiol Behav. 2007, 91 (5): 513-521. 10.1016/j.physbeh.2007.03.018.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barson JR, Carr AJ, Soun JE, Sobhani NC, Rada P, Leibowitz SF, Hoebel BG: Opioids in the hypothalamic paraventricular nucleus stimulate ethanol intake. Alcohol Clin Exp Res. 2010, 34 (2): 214-222. 10.1111/j.1530-0277.2009.01084.x.
Article
CAS
PubMed
Google Scholar
Morganstern I, Chang GQ, Chen YW, Barson JR, Zhiyu Y, Hoebel BG, Leibowitz SF: Role of melanin-concentrating hormone in the control of ethanol consumption: Region-specific effects revealed by expression and injection studies. Physiol Behav. 2010, 101 (4): 428-437. 10.1016/j.physbeh.2010.07.009.
Article
PubMed Central
CAS
PubMed
Google Scholar
McCaul ME, Wand GS, Stauffer R, Lee SM, Rohde CA: Naltrexone dampens ethanol-induced cardiovascular and hypothalamic- pituitary-adrenal axis activation. Neuropsychopharmacology. 2001, 25 (4): 537-547. 10.1016/S0893-133X(01)00241-X.
Article
CAS
PubMed
Google Scholar
Rivier C: Alcohol stimulates ACTH secretion in the rat: mechanisms of action and interactions with other stimuli. Alcohol Clin Exp Res. 1996, 20 (2): 240-254. 10.1111/j.1530-0277.1996.tb01636.x.
Article
CAS
PubMed
Google Scholar
Wand GS, Dobs AS: Alterations in the hypothalamic-pituitary-adrenal axis in actively drinking alcoholics. J Clin Endocrinol Metab. 1991, 72 (6): 1290-1295. 10.1210/jcem-72-6-1290.
Article
CAS
PubMed
Google Scholar
Allen CD, Lee S, Koob GF, Rivier C: Immediate and prolonged effects of alcohol exposure on the activity of the hypothalamic-pituitary-adrenal axis in adult and adolescent rats. Brain Behav Immun. 2011, 25 (Suppl 1): S50-S60.
Article
PubMed Central
CAS
PubMed
Google Scholar
Erritzoe D, Tziortzi A, Bargiela D, Colasanti A, Searle GE, Gunn RN, Beaver JD, Waldman A, Nutt DJ, Bani M, Merlo-Pich E, Rabiner EA, Lingford-Hughes A: In Vivo Imaging of Cerebral Dopamine D3 Receptors in Alcoholism. Neuropsychopharmacology. 2014, Epub ahead of print
Google Scholar
Dees WL, Srivastava VK, Hiney JK: Alcohol alters insulin-like growth factor-1 activated oct 2 POU domain gene expression in the immature female hypothalamus. J Stud Alcohol. 2005, 66 (1): 35-45.
Article
PubMed
Google Scholar
Srivastava VK, Hiney JK, Dees WL: Short-term alcohol administration alters KiSS-1 gene expression in the reproductive hypothalamus of prepubertal female rats. Alcohol Clin Exp Res. 2009, 33 (9): 1605-1614. 10.1111/j.1530-0277.2009.00992.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bekdash RA, Zhang C, Sarkar DK: Gestational choline supplementation normalized fetal alcohol-induced alterations in histone modifications, DNA methylation, and proopiomelanocortin (POMC) gene expression in beta-endorphin-producing POMC neurons of the hypothalamus. Alcohol Clin Exp Res. 2013, 37 (7): 1133-1142. 10.1111/acer.12082.
Article
PubMed Central
CAS
PubMed
Google Scholar
Agapito MA, Barreira JC, Logan RW, Sarkar DK: Evidence for possible period 2 gene mediation of the effects of alcohol exposure during the postnatal period on genes associated with maintaining metabolic signaling in the mouse hypothalamus. Alcohol Clin Exp Res. 2013, 37 (2): 263-269. 10.1111/j.1530-0277.2012.01871.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ryabinin AE, Criado JR, Henriksen SJ, Bloom FE, Wilson MC: Differential sensitivity of c-Fos expression in hippocampus and other brain regions to moderate and low doses of alcohol. Mol Psychiatry. 1997, 2 (1): 32-43. 10.1038/sj.mp.4000206.
Article
CAS
PubMed
Google Scholar
Ryabinin AE, Wang YM: Repeated alcohol administration differentially affects c-Fos and FosB protein immunoreactivity in DBA/2 J mice. Alcohol Clin Exp Res. 1998, 22 (8): 1646-1654. 10.1111/j.1530-0277.1998.tb03962.x.
Article
CAS
PubMed
Google Scholar
Ahmed SH, Lutjens R, van der Stap LD, Lekic D, Romano-Spica V, Morales M, Koob GF, Repunte-Canonigo V, Sanna PP: Gene expression evidence for remodeling of lateral hypothalamic circuitry in cocaine addiction. Proc Natl Acad Sci U S A. 2005, 102 (32): 11533-11538. 10.1073/pnas.0504438102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen H, Saad S, Sandow SL, Bertrand PP: Cigarette smoking and brain regulation of energy homeostasis. Front Pharmacol. 2012, 3: 147.
PubMed Central
PubMed
Google Scholar
Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T: Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984, 311 (13): 819-823. 10.1056/NEJM198409273111303.
Article
CAS
PubMed
Google Scholar
Brum PC, Rolim NP, Bacurau AV, Medeiros A: Neurohumoral activation in heart failure: the role of adrenergic receptors. An Acad Bras Cienc. 2006, 78 (3): 485-503. 10.1590/S0001-37652006000300009.
Article
CAS
PubMed
Google Scholar
Zou H, Xie Q, Zhang M, Zhang C, Zhao G, Jin M, Yu L: Chronic alcohol consumption from adolescence to adulthood in mice - effect on growth and social behavior. Drug Alcohol Depend. 2009, 104: 119-125. 10.1016/j.drugalcdep.2009.04.021.
Article
PubMed Central
CAS
PubMed
Google Scholar
Randall CL, Carpenter JA, Lester D, Friedman HJ: Ethanol-induced mouse strain differences in locomotor activity. Pharmacol Biochem Behav. 1975, 3 (3): 533-535. 10.1016/0091-3057(75)90069-6.
Article
CAS
PubMed
Google Scholar
Frye GD, Breese GR: An evaluation of the locomotor stimulating action of ethanol in rats and mice. Psychopharmacology (Berl). 1981, 75 (4): 372-379. 10.1007/BF00435856.
Article
CAS
Google Scholar
Tambour S, Didone V, Tirelli E, Quertemont E: Locomotor effects of ethanol and acetaldehyde after peripheral and intraventricular injections in Swiss and C57BL/6 J mice. Behav Brain Res. 2006, 172 (1): 145-154. 10.1016/j.bbr.2006.05.010.
Article
CAS
PubMed
Google Scholar
Rhodes JS, Ford MM, Yu CH, Brown LL, Finn DA, Garland T, Crabbe JC: Mouse inbred strain differences in ethanol drinking to intoxication. Genes Brain Behav. 2007, 6 (1): 1-18. 10.1111/j.1601-183X.2006.00210.x.
Article
CAS
PubMed
Google Scholar
Short JL, Drago J, Lawrence AJ: Comparison of ethanol preference and neurochemical measures of mesolimbic dopamine and adenosine systems across different strains of mice. Alcohol Clin Exp Res. 2006, 30 (4): 606-620. 10.1111/j.1530-0277.2006.00071.x.
Article
CAS
PubMed
Google Scholar
McMillen BA, Williams HL: Role of taste and calories in the selection of ethanol by C57BL/6NHsd and Hsd:ICR mice. Alcohol. 1998, 15 (3): 193-198. 10.1016/S0741-8329(97)00111-0.
Article
CAS
PubMed
Google Scholar
Belknap JK, Crabbe JC, Young ER: Voluntary consumption of ethanol in 15 inbred mouse strains. Psychopharmacology (Berlin). 1993, 112 (4): 503-510. 10.1007/BF02244901.
Article
CAS
Google Scholar
Grisel JE, Mogil JS, Grahame NJ, Rubinstein M, Belknap JK, Crabbe JC, Low MJ: Ethanol oral self-administration is increased in mutant mice with decreased beta-endorphin expression. Brain Res. 1999, 835 (1): 62-67. 10.1016/S0006-8993(99)01384-0.
Article
CAS
PubMed
Google Scholar
Middaugh LD, Bandy AL: Naltrexone effects on ethanol consumption and response to ethanol conditioned cues in C57BL/6 mice. Psychopharmacology (Berlin). 2000, 151 (4): 321-327. 10.1007/s002130000479.
Article
CAS
Google Scholar
Roberts AJ, Gold LH, Polis I, McDonald JS, Filliol D, Kieffer BL, Koob GF: Increased ethanol self-administration in delta-opioid receptor knockout mice. Alcohol ClinExpRes. 2001, 25 (9): 1249-1256.
CAS
Google Scholar
Spanagel R, Siegmund S, Cowen M, Schroff KC, Schumann G, Fiserova M, Sillaber I, Wellek S, Singer M, Putzke J: The neuronal nitric oxide synthase gene is critically involved in neurobehavioral effects of alcohol. J Neurosci. 2002, 22 (19): 8676-8683.
CAS
PubMed
Google Scholar
Blizard DA, Vandenbergh DJ, Jefferson AL, Chatlos CD, Vogler GP, McClearn GE: Effects of periadolescent ethanol exposure on alcohol preference in two BALB substrains. Alcohol. 2004, 34 (2–3): 177-185.
Article
CAS
PubMed
Google Scholar
Camarini R, Hodge CW: Ethanol preexposure increases ethanol self-administration in C57BL/6 J and DBA/2 J mice. Pharmacol Biochem Behav. 2004, 79 (4): 623-632. 10.1016/j.pbb.2004.09.012.
Article
CAS
PubMed
Google Scholar
Khisti RT, Wolstenholme J, Shelton KL, Miles MF: Characterization of the ethanol-deprivation effect in substrains of C57BL/6 mice. Alcohol. 2006, 40 (2): 119-126. 10.1016/j.alcohol.2006.12.003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Center for Drug Evaluation and Research FDA: Guidance for industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. 2005, Silver Spring, MD, U.S: Food and Drug Administration
Google Scholar
Ozawa H, Katamura Y, Hatta S, Saito T, Katada T, Gsell W, Froelich L, Takahata N, Riederer P: Alterations of guanine nucleotide-binding proteins in post-mortem human brain in alcoholics. Brain Res. 1993, 620 (1): 174-179. 10.1016/0006-8993(93)90289-Y.
Article
CAS
PubMed
Google Scholar
Sohma H, Hashimoto E, Shirasaka T, Tsunematsu R, Ozawa H, Boissl KW, Boning J, Riederer P, Saito T: Quantitative reduction of type I adenylyl cyclase in human alcoholics. Biochim Biophys Acta. 1999, 1454 (1): 11-18. 10.1016/S0925-4439(99)00018-6.
Article
CAS
PubMed
Google Scholar
Diamond I, Wrubel B, Estrin W, Gordon A: Basal and adenosine receptor-stimulated levels of cAMP are reduced in lymphocytes from alcoholic patients. Proc Natl Acad Sci U S A. 1987, 84 (5): 1413-1416. 10.1073/pnas.84.5.1413.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tabakoff B, Hoffman PL, Lee JM, Saito T, Willard B, De Leon-Jones F: Differences in platelet enzyme activity between alcoholics and nonalcoholics. N Engl J Med. 1988, 318 (3): 134-139. 10.1056/NEJM198801213180302.
Article
CAS
PubMed
Google Scholar
Koga Y, Kajiyama K, Sufu H, Otsuki T, Tsuji Y, Iwami G, Toshima H: Alterations in beta-adrenergic receptor density and cyclic-AMP level in the myocardium of rats chronically treated with alcohol. Kurume Med J. 1993, 40 (1): 1-6. 10.2739/kurumemedj.40.1.
Article
CAS
PubMed
Google Scholar
Banerjee SP, Sharma VK, Khanna JM: Alterations in beta-adrenergic receptor binding during ethanol withdrawal. Nature. 1978, 276 (5686): 407-409. 10.1038/276407a0.
Article
CAS
PubMed
Google Scholar
French SW, Palmer DS, Narod ME, Reid PE, Ramey CW: Noradrenergic sensitivity of the cerebral cortex after chronic ethanol ingestion and withdrawal. J Pharmacol Exp Ther. 1975, 194 (2): 319-326.
CAS
PubMed
Google Scholar
Saito T, Lee JM, Hoffman PL, Tabakoff B: Effects of chronic ethanol treatment on the beta-adrenergic receptor-coupled adenylate cyclase system of mouse cerebral cortex. J Neurochem. 1987, 48 (6): 1817-1822. 10.1111/j.1471-4159.1987.tb05741.x.
Article
CAS
PubMed
Google Scholar
Wand GS, Levine MA: Hormonal tolerance to ethanol is associated with decreased expression of the GTP-binding protein, Gs alpha, and adenylyl cyclase activity in ethanol-treated LS mice. Alcohol Clin Exp Res. 1991, 15 (4): 705-710. 10.1111/j.1530-0277.1991.tb00583.x.
Article
CAS
PubMed
Google Scholar
Wand GS, Diehl AM, Levine MA, Wolfgang D, Samy S: Chronic ethanol treatment increases expression of inhibitory G-proteins and reduces adenylylcyclase activity in the central nervous system of two lines of ethanol-sensitive mice. J Biol Chem. 1993, 268 (4): 2595-2601.
CAS
PubMed
Google Scholar
Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J: Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell. 2000, 102 (1): 89-97. 10.1016/S0092-8674(00)00013-1.
Article
CAS
PubMed
Google Scholar
Zhang Z, Xu Y, Song H, Rodriguez J, Tuteja D, Namkung Y, Shin HS, Chiamvimonvat N: Functional Roles of Ca(v)1.3 (alpha(1D)) calcium channel in sinoatrial nodes: insight gained using gene-targeted null mutant mice. Circ Res. 2002, 90 (9): 981-987. 10.1161/01.RES.0000018003.14304.E2.
Article
CAS
PubMed
Google Scholar
Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, Nargeot J: Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A. 2003, 100 (9): 5543-5548. 10.1073/pnas.0935295100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bers DM: Cardiac excitation-contraction coupling. Nature. 2002, 415 (6868): 198-205. 10.1038/415198a.
Article
CAS
PubMed
Google Scholar
Hell JW, Westenbroek RE, Warner C, Ahlijanian MK, Prystay W, Gilbert MM, Snutch TP, Catterall WA: Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits. J Cell Biol. 1993, 123 (4): 949-962. 10.1083/jcb.123.4.949.
Article
CAS
PubMed
Google Scholar
Safa P, Boulter J, Hales TG: Functional properties of Cav1.3 (alpha1D) L-type Ca2+ channel splice variants expressed by rat brain and neuroendocrine GH3 cells. J Biol Chem. 2001, 276 (42): 38727-38737. 10.1074/jbc.M103724200.
Article
CAS
PubMed
Google Scholar
Kim S, Yun HM, Baik JH, Chung KC, Nah SY, Rhim H: Functional interaction of neuronal Cav1.3 L-type calcium channel with ryanodine receptor type 2 in the rat hippocampus. J Biol Chem. 2007, 282 (45): 32877-32889. 10.1074/jbc.M701418200.
Article
CAS
PubMed
Google Scholar
Hilton SM: Hypothalamic regulation of the cardiovascular system. Br Med Bull. 1966, 22 (3): 243-248.
CAS
PubMed
Google Scholar
Coote JH: Cardiovascular function of the paraventricular nucleus of the hypothalamus. Biol Signals. 1995, 4 (3): 142-149. 10.1159/000109434.
Article
CAS
PubMed
Google Scholar
Ferguson AV, Latchford KJ, Samson WK: The paraventricular nucleus of the hypothalamus - a potential target for integrative treatment of autonomic dysfunction. Expert Opin Ther Targets. 2008, 12 (6): 717-727. 10.1517/14728222.12.6.717.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pyner S: Neurochemistry of the paraventricular nucleus of the hypothalamus: implications for cardiovascular regulation. J Chem Neuroanat. 2009, 38 (3): 197-208. 10.1016/j.jchemneu.2009.03.005.
Article
CAS
PubMed
Google Scholar
Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB: Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982, 307 (4): 205-211. 10.1056/NEJM198207223070401.
Article
CAS
PubMed
Google Scholar
Bristow MR, Minobe WA, Raynolds MV, Port JD, Rasmussen R, Ray PE, Feldman AM: Reduced beta 1 receptor messenger RNA abundance in the failing human heart. J Clin Invest. 1993, 92 (6): 2737-2745. 10.1172/JCI116891.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lohse MJ, Engelhardt S, Eschenhagen T: What is the role of beta-adrenergic signaling in heart failure?. Circ Res. 2003, 93 (10): 896-906. 10.1161/01.RES.0000102042.83024.CA.
Article
CAS
PubMed
Google Scholar
Lipscombe D, Helton TD, Xu W: L-type calcium channels: the low down. J Neurophysiol. 2004, 92 (5): 2633-2641. 10.1152/jn.00486.2004.
Article
CAS
PubMed
Google Scholar
Piano MR: Alcoholic cardiomyopathy: incidence, clinical characteristics, and pathophysiology. Chest. 2002, 121 (5): 1638-1650. 10.1378/chest.121.5.1638.
Article
PubMed
Google Scholar
Laonigro I, Correale M, Di Biase M, Altomare E: Alcohol abuse and heart failure. Eur J Heart Fail. 2009, 11 (5): 453-462. 10.1093/eurjhf/hfp037.
Article
PubMed
Google Scholar
Solem M, Almas J, Rubin E, Thomas A: Changes in activity and regulation of the cardiac Ca2+ channel (L-type) by protein kinase C in chronic alcohol-exposed rats. Alcohol Clin Exp Res. 2000, 24 (8): 1145-1152. 10.1111/j.1530-0277.2000.tb02077.x.
Article
CAS
PubMed
Google Scholar
Pecherskaya A, Rubin E, Solem M: Alterations in insulin-like growth factor-I signaling in cardiomyocytes from chronic alcohol-exposed rats. Alcohol Clin Exp Res. 2002, 26 (7): 995-1002. 10.1111/j.1530-0277.2002.tb02633.x.
Article
CAS
PubMed
Google Scholar
Thomas G, Haider B, Oldewurtel HA, Lyons MM, Yeh CK, Regan TJ: Progression of myocardial abnormalities in experimental alcoholism. Am J Cardiol. 1980, 46 (2): 233-241. 10.1016/0002-9149(80)90063-6.
Article
CAS
PubMed
Google Scholar
Thomas AP, Rozanski DJ, Renard DC, Rubin E: Effects of ethanol on the contractile function of the heart: a review. Alcohol Clin Exp Res. 1994, 18 (1): 121-131. 10.1111/j.1530-0277.1994.tb00891.x.
Article
CAS
PubMed
Google Scholar
Wu J, Zou H, Strong JA, Yu J, Zhou X, Xie Q, Zhao G, Jin M, Yu L: Bimodal effects of MK-801 on locomotion and stereotypy in C57BL/6 mice. Psychopharmacology. 2005, 177 (3): 256-263. 10.1007/s00213-004-1944-1.
Article
CAS
PubMed
Google Scholar
Casella G, Berger R: Statistical Inference. 2002, Pacific Grove: Wadsworth, 2
Google Scholar
Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009, 4 (1): 44-57.
Article
CAS
Google Scholar
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27 (1): 29-34. 10.1093/nar/27.1.29.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang B, Schmoyer D, Kirov S, Snoddy J: GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinforma. 2004, 5: 16-10.1186/1471-2105-5-16.
Article
Google Scholar
Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64 (15): 5245-5250. 10.1158/0008-5472.CAN-04-0496.
Article
CAS
PubMed
Google Scholar