Background
In the early visual system, regarding the detection of a visual event, motion information is pre-processed in the Magnocellular pathway, while it has been shown that the Koniocellular pathway [1] also plays an important role, providing a global analysis about such a kind of information processing. However, the functional interplay between these two parallel pathways remains partially understood. Previous works have attacked this question by studying the signals produced by the corresponding ganglion cells [1] and their elaboration at further steps [2], rather than proposing to model the underlying mechanisms at a mesoscopic level, i.e., focusing on the functional aspects of such dual processing. Neurobiological studies dedicated to the thalamocortical stage of the early visual system provide knowledge on particular characteristics of the system, namely: 1) the variety of cell types in the retina [2], inducing different pathways, 2) the variety of thalamocortical projections through focused vs diffuse efferences to the cortex [3], from core vs matrix (specific vs non-specific) thalamic nuclei, and 3) the variety of kinds of connectivity between thalamic, cortical and collicular areas (i.e., feedforward, feedback, shortcuts, driver and modulator information flows [4]).