Skip to main content
  • Poster presentation
  • Open access
  • Published:

Linking neural mass signals and spike train statistics through point process and linear systems theory

The relation between neural mass signals, like local field potentials (LFP) or electro-encephalograms (EEG), and the spiking activity of neurons in a network is still poorly understood. Recently, linear temporal filters have been used to map multi-unit activity (MUA) to LFP signals recorded at the same electrode [1]. Similar kernels have been previously identified relating simulated network activity to the human EEG [2]. However, currently there are no theoretical/computational models to explain the form of these filters that map MUA to LFP or EEG.

Here we studied the relation between MUA and LFP in a minimal network model of the neocortex. Using simplified statistical models of neurons [3, 4], the firing rate response of neuronal populations to time-dependent inputs can be characterized as that of a high pass filter. At the same time, the LFP recorded in the neocortex can be interpreted as a measure of the summated synaptic input to the population of nearby neurons [5], filtered by the neuronal membranes and the recurrent network [6]. Combining these various filter operations, we arrive at the forward model (LFP to MUA) of a band-pass filter, which can be inverted to predict the LFP from the MUA. Our results explain the form of the experimentally obtained kernels [1] and provide insight into the encoding of a stimulus by local neuronal populations. Furthermore, our theory explains characteristic properties of the neocortical LFP, solely based on effective neuronal refractoriness, membrane filtering and recurrent connectivity.


  1. Rasch M, Logothetis NK, Kreiman G: From neurons to circuits: linear estimation of local field potentials. J Neurosci. 2009, 29: 13785-13796. 10.1523/JNEUROSCI.2390-09.2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Meier R, Kumar A, Schulze-Bonhage A, Aertsen A: Comparison of dynamical states of random networks with human EEG. Neurocomputing. 2007, 70: 1843-1847. 10.1016/j.neucom.2006.10.115.

    Article  Google Scholar 

  3. Deger M, Helias M, Boucsein C, Rotter S: Statistical properties of superimposed stationary spike trains. J Comput Neurosci. 2012, 32: 443-463. 10.1007/s10827-011-0362-8.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Deger M, Helias M, Cardanobile S, Atay FM, Rotter S: Nonequilibrium dynamics of stochastic point processes with refractoriness. Phys Rev E. 2010, 82: 021129-

    Article  Google Scholar 

  5. Lindén H, Tetzlaff T, Potjans TC, Pettersen KH, Grün S, Diesmann M, Einevoll GT: Modeling the spatial reach of the LFP. Neuron. 2011, 72: 859-872. 10.1016/j.neuron.2011.11.006.

    Article  PubMed  Google Scholar 

  6. Kriener B, Tetzlaff T, Aertsen A, Diesmann M, Rotter S: Correlations and population dynamics in cortical networks. Neural Comput. 2008, 20: 2185-2226. 10.1162/neco.2008.02-07-474.

    Article  PubMed  Google Scholar 

Download references


This work was partially funded by BMBF Grant No. 01GQ0420 to BCCN Freiburg.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Moritz Deger.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Deger, M., Kumar, A., Aertsen, A. et al. Linking neural mass signals and spike train statistics through point process and linear systems theory. BMC Neurosci 14 (Suppl 1), P330 (2013).

Download citation

  • Published:

  • DOI: